In order to exploit the specific vulnerabilities of tumors, it is urgent to identify the basis of associated defects in genome maintenance. One unsolved problem is the mechanism of inhibition of processing of DNA double-strand break repair by REV7 and its influence on DNA repair pathways. We searched for REV7-associated proteins in human cells and found FAM35A, a protein of previously unknown function. By analyzing the FAM35A sequence we discovered that FAM35A has an unstructured N-terminal region and a C-terminal region harboring three OB-fold domains similar to single-stranded binding protein RPA. Knockdown of FAM35A caused sensitivity to DNA damaging agents, and FAM35A re-localized in damaged cell nuclei. In a BRCA1 mutant cell line, however, depletion of FAM35A increased resistance to camptothecin, suggesting that FAM35A participates in processing of DNA ends to allow more efficient DNA repair. Moreover, we found FAM35A absent in one widely used BRCA1-mutant cancer cell line (HCC1937) with anomalous resistance to PARP inhibitors. A survey of FAM35A alterations in cancer revealed that the gene is altered at the highest frequency in prostate cancers (up to 13%) and significantly less expressed in metastatic cases. The results reveal a new DNA repair factor with promise as a therapeutically relevant cancer marker.
DNA polymerase zeta (pol ζ) is exceptionally important for controlling mutagenesis and genetic instability. REV3L comprises the catalytic subunit, while REV7 (MAD2L2) is considered an accessory subunit. However, it has not been established that the role of REV7 in DNA damage tolerance is necessarily connected with mammalian pol ζ, and there is accumulating evidence that REV7 and REV3L have independent functions. Analysis of pol ζ has been hampered by difficulties in expression of REV3L in mammalian cells, and lack of a functional complementation system. Here, we report that REV7 interacts with full-length REV3L in vivo and we identify a new conserved REV7 interaction site in human REV3L (residues 1993–2003), distinct from the known binding site (residues 1877–1887). Mutation of both REV7-binding sites eliminates the REV3L–REV7 interaction. In
vivo complementation shows that both REV7-binding sites in REV3L are necessary for preventing spontaneous chromosome breaks and conferring resistance to UV radiation and cisplatin. This demonstrates a damage-specific function of REV7 in pol ζ, in contrast to the distinct roles of REV3L and REV7 in primary cell viability and embryogenesis.
To exploit vulnerabilities of tumors, it is urgent to identify associated defects in genome maintenance. One unsolved problem is the mechanism of regulation of DNA double‐strand break repair by REV7 in complex with 53BP1 and RIF1, and its influence on repair pathway choice between homologous recombination and non‐homologous end‐joining. We searched for REV7‐associated factors in human cells and found FAM35A, a previously unstudied protein with an unstructured N‐terminal region and a C‐terminal region harboring three OB‐fold domains similar to single‐stranded DNA‐binding protein RPA, as novel interactor of REV7/RIF1/53BP1. FAM35A re‐localized in damaged cell nuclei, and its knockdown caused sensitivity to DNA‐damaging agents. In a BRCA1‐mutant cell line, however, depletion of FAM35A increased resistance to camptothecin, suggesting that FAM35A participates in processing of DNA ends to allow more efficient DNA repair. We found FAM35A absent in one widely used BRCA1‐mutant cancer cell line (HCC1937) with anomalous resistance to PARP inhibitors. A survey of FAM35A alterations revealed that the gene is altered at the highest frequency in prostate cancers (up to 13%) and significantly less expressed in metastatic cases, revealing promise for FAM35A as a therapeutically relevant cancer marker.
DNA polymerase ζ (pol ζ) is exceptionally important for maintaining genome stability. Inactivation of the Rev3l gene encoding the polymerase catalytic subunit causes a high frequency of chromosomal breaks, followed by lethality in mouse embryos and in primary cells. Yet it is not known whether the DNA polymerase activity of pol ζ is specifically essential, as the large REV3L protein also serves as a multiprotein scaffold for translesion DNA synthesis via multiple conserved structural domains. We report that Rev3l cDNA rescues the genomic instability and DNA damage sensitivity of Rev3l-null immortalized mouse fibroblast cell lines. A cDNA harboring mutations of conserved catalytic aspartate residues in the polymerase domain of REV3L could not rescue these phenotypes. To investigate the role of REV3L DNA polymerase activity in vivo, a Rev3l knock-in mouse was constructed with this polymerase-inactivating alteration. No homozygous mutant mice were produced, with lethality occurring during embryogenesis. Primary fibroblasts from mutant embryos showed growth defects, elevated DNA double-strand breaks and cisplatin sensitivity similar to Rev3l-null fibroblasts. We tested whether the severe Rev3l-/- phenotypes could be rescued by deletion of DNA polymerase η, as has been reported with chicken DT40 cells. However, Rev3l-/-
Polh-/- mice were inviable, and derived primary fibroblasts were as sensitive to DNA damage as Rev3l-/-
Polh+/+ fibroblasts. Therefore, the functions of REV3L in maintaining cell viability, embryonic viability and genomic stability are directly dependent on its polymerase activity, and cannot be ameliorated by an additional deletion of pol η. These results validate and encourage the approach of targeting the DNA polymerase activity of pol ζ to sensitize tumors to DNA damaging agents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.