Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Given the growing evidence of gut microbiota being involved in psychiatric (including neurodevelopmental) disorders, we aimed to identify differences in gut microbiota composition between participants with ADHD and controls and to investigate the role of the microbiota in inattention and hyperactivity/impulsivity. Fecal samples were collected from 107 participants (NADHD = 42; Ncontrols = 50; NsubthreholdADHD = 15; range age: 13–29 years). The relative quantification of bacterial taxa was done using 16S ribosomal RNA gene amplicon sequencing. Beta-diversity revealed significant differences in bacterial composition between participants with ADHD and healthy controls, which was also significant for inattention, but showing a trend in case of hyperactivity/impulsivity only. Ten genera showed nominal differences (p < 0.05) between both groups, of which seven genera were tested for their association with ADHD symptom scores (adjusting for age, sex, body mass index, time delay between feces collection and symptoms assessment, medication use, and family relatedness). Our results show that variation of a genus from the Ruminococcaceae family (Ruminococcaceae_UCG_004) is associated (after multiple testing correction) with inattention symptoms and support the potential role of gut microbiota in ADHD pathophysiology.
Background: The impact of the gut microbiota on host physiology and behavior has been relatively well established. Whether changes in microbial composition affect brain structure and function is largely elusive, however. This is important as altered brain structure and function have been implicated in various neurodevelopmental disorders, like attention-deficit/hyperactivity disorder (ADHD). We hypothesized that gut microbiota of persons with and without ADHD, when transplanted into mice, would differentially modify brain function and/or structure. We investigated this by colonizing young, male, germ-free C57BL/6JOlaHsd mice with microbiota from individuals with and without ADHD. We generated and analyzed microbiome data, assessed brain structure and function by magnetic resonance imaging (MRI), and studied mouse behavior in a behavioral test battery.Results: Principal coordinate analysis showed a clear separation of fecal microbiota of mice colonized with ADHD and control microbiota. With diffusion tensor imaging, we observed a decreased structural integrity of both white and gray matter regions (i.e., internal capsule, hippocampus) in mice that were colonized with ADHD microbiota. We also found significant correlations between white matter integrity and the differentially expressed microbiota. Mice colonized with ADHD microbiota additionally showed decreased resting-state functional MRI-based connectivity between right motor and right visual cortices. These regions, as well as the hippocampus and internal capsule, have previously been reported to be altered in several neurodevelopmental disorders. Furthermore, we also show that mice colonized with ADHD microbiota were more anxious in the open-field test. Conclusions: Taken together, we demonstrate that altered microbial composition could be a driver of altered brain structure and function and concomitant changes in the animals' behavior. These findings may help to understand the mechanisms through which the gut microbiota contributes to the pathobiology of neurodevelopmental disorders.
Attention-deficit/hyperactivity disorder (ADHD) is a common neurodevelopmental disorder. Given the growing evidence of gut microbiota being involved in psychiatric (including neurodevelopmental) disorders, we aimed to identify differences in gut microbiota composition between participants with ADHD and controls and to investigate the role of the microbiota in inattention and hyperactivity/impulsivity. Fecal samples were collected from 107 participants (NADHD=42; Ncontrols=50; NsubthreholdADHD=15; range age: 13-29 years). The relative quantification of bacterial taxa was done using 16S ribosomal RNA gene amplicon sequencing. Beta-diversity revealed significant differences in bacterial composition between participants with ADHD and healthy controls, which was also significant for inattention, but showing a trend in case of hyperactivity/impulsivity only. Ten genera showed nominal differences (P < 0.05) between both groups, of which seven genera were tested for their association with ADHD symptom scores (adjusting for age, sex, body mass index, time delay between feces collection and symptoms assessment, medication use and family relatedness). Our results show that variation of a genus from the Ruminococcaceae family (Ruminococcaceae_UCG_004) is associated (after multiple testing correction) with inattention symptoms, and suggest a role of gut microbiota in ADHD pathophysiology.
RationaleReversal learning requires associative learning and executive functioning to suppress non-adaptive responding. Reversal-learning deficits are observed in e.g. schizophrenia and obsessive-compulsive disorder and implicate neural circuitry including the orbitofrontal cortex (OFC). Serotonergic function has been strongly linked to visual reversal learning in humans and experimental animals but less is known about which receptor subtypes are involved.ObjectivesThe objectives of the study were to test the effects of systemic and intra-OFC 5-HT2C-receptor antagonism on visual reversal learning in rats and assess the psychological mechanisms underlying these effects within novel touchscreen paradigms.MethodsIn experiments 1–2, we used a novel 3-stimulus task to investigate the effects of 5-HT2C-receptor antagonism through SB 242084 (0.1, 0.5 and 1.0 mg/kg i.p.) cross-site. Experiment 3 assessed the effects of SB 242084 in 2-choice reversal learning. In experiment 4, we validated a novel touchscreen serial visual reversal task suitable for neuropharmacological microinfusions by baclofen-/muscimol-induced OFC inactivation. In experiment 5, we tested the effect of intra-OFC SB 242084 (1.0 or 3.0 μg/side) on performance in this task.ResultsIn experiments 1–3, SB 242084 reduced early errors but increased late errors to criterion. In experiment 5, intra-OFC SB 242084 reduced early errors without increasing late errors in a reversal paradigm validated as OFC dependent (experiment 4).ConclusionIntra-OFC 5-HT2C-receptor antagonism decreases perseveration in novel touchscreen reversal-learning paradigms for the rat. Systemic 5-HT2C-receptor antagonism additionally impairs late learning—a robust effect observed cross-site and potentially linked to impulsivity. These conclusions are discussed in terms of neural mechanisms underlying reversal learning and their relevance to psychiatric disorders.Electronic supplementary materialThe online version of this article (doi:10.1007/s00213-015-3963-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.