Cue-induced methamphetamine seeking progressively increases after withdrawal (incubation of methamphetamine craving), but the underlying mechanisms are largely unknown. We determined whether this incubation is associated with alterations in candidate genes in dorsal striatum (DS), a brain area implicated in cue-and context-induced drug relapse. We first measured mRNA expression of 24 candidate genes in whole DS extracts after short (2 d) or prolonged (1 month) withdrawal in rats following extended-access methamphetamine or saline (control condition) self-administration (9 h/d, 10 d). We found minimal changes. Next, using fluorescence-activated cell sorting, we compared gene expression in Fos-positive dorsal striatal neurons, which were activated during "incubated" cue-induced drug-seeking tests after prolonged withdrawal, with nonactivated Fos-negative neurons. We found significant increases in mRNA expression of immediate early genes (Arc, Egr1), Bdnf and its receptor (Trkb), glutamate receptor subunits (Gria1, Gria3, Grm1), and epigenetic enzymes (Hdac3, Hdac4, Hdac5, GLP, Dnmt3a, Kdm1a) in the Fos-positive neurons only. Using RNAscope to determine striatal subregion and cell-type specificity of the activated neurons, we measured colabeling of Fos with Drd1 and Drd2 in three DS subregions. Fos expression was neither subregion nor cell-type specific (52.5 and 39.2% of Fos expression colabeled with Drd1 and Drd2, respectively). Finally, we found that DS injections of SCH23390 (C 17 H 18 ClNO), a D 1 -family receptor antagonist known to block cue-induced Fos induction, decreased incubated cue-induced methamphetamine seeking after prolonged withdrawal. Results demonstrate a critical role of DS in incubation of methamphetamine craving and that this incubation is associated with selective gene-expression alterations in cue-activated D 1 -and D 2 -expressing DS neurons.
Background Recent evidence implicates toll-like receptor 4 (TLR4) in opioid analgesia, tolerance, conditioned place preference, and self-administration. Here we determined the effect of the TLR4 antagonist (+)-naltrexone (a μ-opioid receptor inactive isomer) on the time-dependent increases in cue-induced heroin seeking after withdrawal (incubation of heroin craving). Methods In an initial experiment, we trained rats for 9 h/day to self-administer heroin (0.1 mg/kg/infusion) for 9 days; lever presses were paired with a 5-sec tone-light cue. We then assessed cue-induced heroin seeking in 30-min extinction sessions on withdrawal day 1; immediately after testing, we surgically implanted rats with Alzet minipumps delivering (+)-naltrexone (0, 7.5, 15, 30 mg/kg/day, s.c.) for 14 days. We then tested the rats for incubated cue-induced heroin seeking in 3-h extinction tests on withdrawal day 13. Results We found that chronic delivery of (+)-naltrexone via minipumps during the withdrawal phase decreased incubated cue-induced heroin seeking. In follow-up experiments, we found that acute injections of (+)-naltrexone immediately before withdrawal day 13 extinction test had no effect on incubated cue-induced heroin seeking. Furthermore, chronic delivery of (+)-naltrexone (15 or 30 mg/kg/day) or acute systemic injections (15 or 30 mg/kg) had no effect on ongoing extended access heroin self-administration. Finally, in rats trained to self-administer methamphetamine (0.1 mg/kg/infusion, 9 h/d, 9 days), chronic delivery of (+)-naltrexone (30 mg/kg/day) during the withdrawal phase had no effect on incubated cue-induced methamphetamine seeking. Conclusions The present results suggest a critical role of TLR4 in the development of incubation of heroin, but not methamphetamine, craving.
Cue-induced methamphetamine seeking progressively increases after withdrawal but mechanisms underlying this 'incubation of methamphetamine craving' are unknown. Here we studied the role of central amygdala (CeA), ventral medial prefrontal cortex (vmPFC), and orbitofrontal cortex (OFC), brain regions implicated in incubation of cocaine and heroin craving, in incubation of methamphetamine craving. We also assessed the role of basolateral amygdala (BLA) and dorsal medial prefrontal cortex (dmPFC). We trained rats to self-administer methamphetamine (10 days; 9 h/day, 0.1 mg/kg/infusion) and tested them for cue-induced methamphetamine seeking under extinction conditions during early (2 days) or late (4-5 weeks) withdrawal. We first confirmed that 'incubation of methamphetamine craving' occurs under our experimental conditions. Next, we assessed the effect of reversible inactivation of CeA or BLA by GABAA+GABAB receptor agonists (muscimol+baclofen, 0.03+0.3 nmol) on cue-induced methamphetamine seeking during early and late withdrawal. We also assessed the effect of muscimol+baclofen reversible inactivation of vmPFC, dmPFC, and OFC on 'incubated' cue-induced methamphetamine seeking during late withdrawal. Lever presses in the cue-induced methamphetamine extinction tests were higher during late withdrawal than during early withdrawal (incubation of methamphetamine craving). Muscimol+baclofen injections into CeA but not BLA decreased cue-induced methamphetamine seeking during late but not early withdrawal. Muscimol+baclofen injections into dmPFC, vmPFC, or OFC during late withdrawal had no effect on incubated cue-induced methamphetamine seeking. Together with previous studies, results indicate that the CeA has a critical role in incubation of both drug and non-drug reward craving and demonstrate an unexpected dissociation in mechanisms of incubation of methamphetamine vs cocaine craving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.