Seed germination, one of the most important phases in the life cycle of a plant, is highly responsive to existing environment. Hydrolyzing enzymes play a major role in the mobilization of food reserves by hydrolyzing carbohydrates, proteins and fats. This paper reports on the effect of Cd toxicity on seed germination and the activities of hydrolyzing enzymes, like acid phosphatases (ACPs), proteases and a-amylases in Sorghum bicolor (L.) Moench. The metal uptake by embryonic axes and seeds was quantified. We found that sorghum could tolerate up to 0.5 mM Cd. At concentrations above 3.0 mM, seed germination was adversely affected with a complete cessation of seedling growth. All investigated hydrolyzing enzymes exhibited a significant decrease in activity with increasing Cd concentrations. The isozyme profiles indicated the loss of one or two isozymes of ACP, induction of a new isozyme for total protease (at 3.0 mM Cd) and a decline in the intensity of aamylase isozymes. SEM studies revealed that Cd affected a change in root hair density. SEM investigations also confirmed the assay results of the inhibition of starch mobilization from endosperm. This suggested an inhibition of the hydrolysis of reserve carbohydrates and translocation of hydrolyzed sugars, ultimately resulting in decreased germination and disruption of seedling growth. Because sorghum is an important dryland crop, its response to the presence of Cd in agro-ecosystems and Cd-induced phytotoxicity during seed germination and seedling growth needs critical investigation.
ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.