A hollow cylinder or a pipe is a common element used in structural applications. Now days in the era of new material development, replacement of consventional materials by modern material are of primary choice for the researchers and developers as well. This paper presents the bucking analysis of functionally graded natural-fiber-flyash-epoxy (FGNFFE) hollow cylinders using FEA. In the first part, a mathematical model for buckling analysis is developed to get the dynamic behavior of hollow cylinder under free vibration. Initial five modes of buckling analysis are performed by theoretical, finite element analysis and experimentation. Accordingly Mechanical properties are obtained and used for buckling study in FEA environment as being a cylindrical structure to the design, it is subjected to compression and buckling due to self weight and due to external load is very common. The critical buckling load is determined by FEA study and compared with the experimental value. Further the study extended by optimizing the critical buckling load and stress with respect to the ingredients and other designed parameters and discussed.
The aim of the work is to investigate mechanical properties and machining (drilling) behaviour glass-sisal-epoxy hybrid composite (GSEHC) with filler as fly-ash and graphene. Hybrid composites are fabricated by hand lay-up technique using Eglass and sisal as reinforcement fiber and epoxy as binder. Mechanical and physical properties like tensile, bending, impact strength, hardness, density and water absorption percentage are examined. The interfacial properties, internal cracks and internal structure of fractured are observed using Scanning Electron Microscope (SEM). Further drilling operation on the fabricated Hybrid composite was carried by varying the spindle speed as 600 rpm, 900 rpm, 1200 rpm to observe suitable drilling speed to carry the circularity test and delamination factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.