Dengue is a serious global health concern especially in tropical and subtropical countries. About 2.5 billion of the world's population is at risk for dengue infection. Early diagnosis is the key to prevent the deterioration of health of the patient to severe illness. Laboratory diagnosis of dengue is essential for providing appropriate supportive treatment to dengue patients with febrile illness, which is difficult to diagnose clinically. Here, we demonstrate surface enhanced Raman scattering (SERS) based diagnosis of dengue virus in clinical blood samples collected from total of 102 subjects. All of the samples were well characterized by conventional NS1 antigen and IgM antibody ELISA kits. The silver nanorods array fabricated by glancing angle deposition technique were employed as SERS substrates. A small amount of patient blood serum (5 μL) was taken for analysis and the report was prepared within a minute. SERS spectra of pure NS1 protein as well as spiked in serum was also recorded separately. Principal component analysis (PCA) was employed as the statistical tool to differentiate dengue positive, dengue negative, and healthy subjects on the basis of their respective SERS spectra. This method provides a sensitive, rapid, and field deployable diagnosis of dengue at the early stage (within 5 days of the onset of symptoms).
This paper presents multiphase sinusoidal oscillators (MSOs) using operational transresistance amplifier (OTRA) based all pass networks. Both even and odd phase oscillations of equal amplitudes which are equally spaced in phase can be produced using single all pass section per phase. The proposed MSOs provide voltage output and can readily be used for driving voltage input circuits without increasing component count. The effect of nonideality of OTRA on the circuit performance is also analysed. The functionality of the proposed circuit is verified through PSPICE simulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.