Stress is a universally ubiquitous emotional state that takes place everywhere and microgestures (MGs) have been verified to indicate more accurate hidden emotions. However, only limited studies attempted to explore how MGs could reflect stress levels. Herein, EmoSense, an emerging technology for wearable systems containing a three‐layer stress detection mechanism, is proposed: 1) converting the MGs into digital signals; 2) training a machine learning‐based MG detection model; and 3) configuring the stress level based on the MG frequency. To detect the MGs, the swept frequency capacitive sensing technology to is adopted capture the MG signals and the random forest model to detect the MGs effectively is applied. 16 participants are recruited in the pilot study to verify the correlation between stress level and MG frequency. The experimental results further verify that stress level is highly related to other negative emotions that should be studied while handling high stress levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.