The role of the intrarenal renin-angiotensin system (RAS) in the pathophysiology of malignant hypertension is not fully understood. Accumulating evidence indicates that the recently discovered vasodilator axis of the RAS, angiotensin-converting enzyme (ACE) type 2 (ACE2)/angiotensin 1-7 (ANG 1-7), constitutes an endogenous system counterbalancing the hypertensiogenic axis, ACE/angiotensin II (ANG II)/AT1 receptor. This study aimed to evaluate the role of the intrarenal vasodilator RAS axis in the pathophysiology of ANG II-dependent malignant hypertension in Cyp1a1-Ren-2 transgenic rats. ANG II-dependent malignant hypertension was induced by 13 days' dietary administration of indole-3-carbinol (I3C), a natural xenobiotic that activates the mouse renin gene in Cyp1a1-Ren-2 transgenic rats. It was hypothesized that pharmacologically-induced inhibition of the ACE2/ANG 1-7 complex should aggravate, and activation of this axis should attenuate, the course of ANG II-dependent malignant hypertension. Blood pressure (BP) was monitored by radiotelemetry. ACE2 inhibitor (DX 600, 0.2 μg/day) and ACE2 activator (DIZE, 1 mg/day) were administrated via osmotic minipumps. Even though ACE2 inhibitor significantly decreased and ACE2 activator increased intrarenal ANG 1-7 concentrations, the course of BP, as well as of albuminuria, cardiac hypertrophy and renal glomerular damage, were not altered. It was shown that intrarenal alterations in the ACE2/ANG 1-7 complex did not significantly modify the course of malignant hypertension in I3C-induced Cyp1a1-Ren-2 transgenic rats. Thus, in our experimental setting alterations of this intrarenal vasodilator complex of the RAS do not significantly modify the form of malignant hypertension that clearly depends on the inappropriately increased activity of the ACE/ANG II/AT1 receptor axis.
When applied in the advanced phase of CKD, addition of ET receptor blockade to the complex RAS blockade brings no further beneficial renoprotective effects on the CKD progression in 5/6 NX TGR, in addition to those seen with RAS blockade alone.
Objective
We evaluated the therapeutic effectiveness of a new, orally active epoxyeicosatrienoic acid analog (EET-A) in rats with angiotensin II (ANG II)-dependent malignant hypertension.
Methods
Malignant hypertension was induced in Cyp1a1-Ren-2 transgenic rats by activation of the renin gene using indole-3-carbinol (I3C), a natural xenobiotic. EET-A treatment was started either simultaneously with I3C induction process (early treatment) or 10 days later during established hypertension (late treatment). Blood pressure (BP) (radiotelemetry), indices of renal and cardiac injury, and plasma and kidney levels of the components of the renin–angiotensin system (RAS) were determined.
Results
In I3C-induced hypertensive rats, early EET-A treatment attenuated BP increase (to 175 ± 3 versus 193 ± 4 mmHg, P < 0.05, on day 13), reduced albuminuria (15 ± 1 versus 28 ± 2 mg/24 h, P < 0.05), and cardiac hypertrophy as compared with untreated I3C-induced rats. This was associated with suppression of plasma and kidney ANG II levels (48 ± 6 versus 106 ± 9 and 122 ± 19 versus 346 ± 11 fmol/ml− or g, respectively, P < 0.05) and increases in plasma and kidney angiotensin (1–7) concentrations (84 ± 9 versus 37 ± 6 and 199 ± 12 versus 68 ± 9 fmol/ml or g, respectively, P < 0.05). Remarkably, late EET-A treatment did not lower BP or improve renal and cardiac injury; indices of RAS activity were not affected.
Conclusion
The new, orally active EET-A attenuated the development of experimental ANG II-dependent malignant hypertension, likely via suppression of the hypertensiogenic axis and augmentation of the vasodilatory/natriuretic axis of RAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.