Two cultivars of tomato (Lycopersicon esculentum Mill.), Selection-7 (shelf life 7-8 d) and ARTH-3 (shelf life 14-15 d) were analyzed for oxidative stress and the antioxidant enzyme system at different stages of fruit ripening. The results presented here suggest that during the early stages of fruit ripening, efficient antioxidant system protects the tomato fruits against the damaging effect of progressive oxidative stress. At later stages, however, oxidative damage occurs due to decreased activities of the ROS scavenging enzymes.
Changes in chemical composition and the activities of hydrolytic enzymes during four different stages of maturity, viz. mature green (MG), color turning (CT), ripe (R), and overripe (OR), have been studied in guava fruits cv. Banarsi Surkha. Chlorophyll content decreased while carotenoid content increased during ripening. Starch content decreased with concomitant increase in alcohol-soluble sugars. Cellulose, hemicellulose, and lignin also decreased up to ripe stage, while pectin continued to decrease up to OR stage. PG (polygalacturonase) and cellulase exhibited progressive increase in activity throughout ripening, whereas pectin methyl esterase (PME) activity increased up to CT stage and decreased at R stage. The activities of alpha-amylase and beta-amylase decreased significantly with ripening. The most notable metabolic changes occurred between MG and CT stage, implying that for improved postharvest handling, guava fruits may be harvested at CT stage.
Two varieties of guava viz., L-49 and Hisar Safeda differing in their shelf lives were analyzed for various components of oxidative stress and of enzymatic and non-enzymatic antioxidative system at different stages of fruit ripening. Indices of oxidative stress viz., lipoxygenase activity, malondialdehyde value and H 2 O 2 content increased throughout during ripening in both the varieties. The extent of oxidative stress was more pronounced in Hisar Safeda (shelf life 3-4 days) than in L-49 (shelf life 7-8 days). Except for superoxide dismutase, activities of all other antioxidative enzymes viz., catalase, peroxidase, ascorbate peroxidase and glutathione reductase increased up to color turning stage and decreased thereafter. Superoxide dismutase activity, however, increased upto ripe stage followed by a decline. Contents of ascorbic acid and glutathione (total, oxidized and reduced) were found to be the maximum at turning and mature stage, respectively. It is inferred that ripening of guava fruit is accompanied by a progressive increase in oxidative/ peroxidative stress which induces antioxidant system but not until later stages of ripening. Over-accumulation of ROS due to dysfunctioning of ROS scavenging system at later stages of fruit ripening appears to be responsible for loss of tissue structure as observed in ripened and over-ripened fruits.
Twenty one genotypes and two check varieties viz. CS-88 and V-240 of cowpea [Vigna unguiculata (L.) Walp. ] were screened for total proteins. The total protein content ranged from 22.4 (HC-3) to 27.9 % (HC-98-64) in 21 genotypes whereas in check varieties it was 25.6 (V-240) and 26.0 % (CS-88). Seven genotypes viz. HC-6, HC-5, CP-21, LST-II-C-12, CP-16, COVU-702 and HC-98-64 having high protein content (26.7 to 27.9 %) were selected for further characterization of their seed storage proteins. Globulins were the major protein fraction ranging from 55.6 (LST-II-C-12) to 58.8 % (CP-16 and HC-6) of total protein. Glutelins was the second major fraction ranging from 14.4 to 15.6 % followed by albumins (8.2 to 11.9 %) and prolamins (2.3 to 5.0 %). Content of free amino acids also showed variations amongst genotypes with COVU-702 having maximum and LST-II-C-12 having minimum content. Essential amino acid analysis revealed that S-amino acids (cysteine and methionine) were the first limiting amino acids followed by tryptophan. From the results presented here it could be suggested that two genotypes viz. LST-II-C-12 and HC-5 be used in breeding programmes aimed at developing high protein moth bean varieties with good quality.
Changes in chemical composition and hydrolytic enzyme activities in guava fruits cv. Lucknow-49 have been reported at four different stages of maturity, viz., mature green (MG), color turning (CT), ripe (R) and over ripe (OR). Chlorophyll content decreased, while carotenoid content increased with advancement of ripening. Starch content decreased with concomitant increase in alcohol soluble sugars. The cell wall constituents viz., cellulose, hemicellulose, and lignin decreased up to R stage, while the pectin content decreased throughout up to OR stage. Among the cell wall hydrolyzing enzymes, polygalacturonase (PG) and ceUulase exhibited progressive increase in activity throughout ripening, while pectin methyl esterase (PME) activity increased up to CT stage and then decreased up to OR stage. The maximum increase in the activities of cell wall hydrolysing enzymes was observed between MG and CT stages. The activities of starch hydrolyzing enzymes, a-amylase and [~-amylase decreased significantly with advancement of ripening. These changes in the activities of hydrolyzing enz y m e s could be considered good indicators of ripening in guava.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.