BackgroundThe production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production.ResultsAn expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate.ConclusionsAn industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates.
Terpenes are natural products with a remarkable diversity in their chemical structures and they hold a significant market share commercially owing to their distinct applications. These potential molecules are usually derived from terrestrial plants, marine and microbial sources. In vitro production of terpenes using plant tissue culture and plant metabolic engineering, although receiving some success, the complexity in downstream processing because of the interference of phenolics and product commercialization due to regulations that are significant concerns. Industrial workhorses' viz., Escherichia coli and Saccharomyces cerevisiae have become microorganisms to produce non-native terpenes in order to address critical issues such as demand-supply imbalance, sustainability and commercial viability. S. cerevisiae enjoys several advantages for synthesizing non-native terpenes with the most significant being the compatibility for expressing cytochrome P450 enzymes from plant origin. Moreover, achievement of high titers such as 40 g/l of amorphadiene, a sesquiterpene, boosts commercial interest and encourages the researchers to envisage both molecular and process strategies for developing yeast cell factories to produce these compounds. This review contains a brief consideration of existing strategies to engineer S. cerevisiae toward the synthesis of terpene molecules. Some of the common targets for synthesis of terpenes in S. cerevisiae are as follows: overexpression of tHMG1, ERG20, upc2-1 in case of all classes of terpenes; repression of ERG9 by replacement of the native promoter with a repressive methionine promoter in case of mono-, di- and sesquiterpenes; overexpression of BTS1 in case of di- and tetraterpenes. Site-directed mutagenesis such as Upc2p (G888A) in case of all classes of terpenes, ERG20p (K197G) in case of monoterpenes, HMG2p (K6R) in case of mono-, di- and sesquiterpenes could be some generic targets. Efforts are made to consolidate various studies (including patents) on this subject to understand the similarities, to identify novel strategies and to contemplate potential possibilities to build a robust yeast cell factory for terpene or terpenoid production. Emphasis is not restricted to metabolic engineering strategies pertaining to sterol and mevalonate pathway, but also other holistic approaches for elsewhere exploitation in the S. cerevisiae genome are discussed. This review also focuses on process considerations and challenges during the mass production of these potential compounds from the engineered strain for commercial exploitation.
Although overexpression of the tHMG1 gene is a well-known strategy for terpene synthesis in Saccharomyces cerevisiae, the optimal level for tHMG1p has not been established. In the present study, it was observed that two copies of the tHMG1 gene on a dual gene expression cassette improved squalene synthesis in laboratory strain by 16.8-fold in comparison to single-copy expression. It was also observed that tHMG1p is limited by its cofactor (NADPH), as the overexpression of NADPH regenerating genes', viz., ZWF1 and POS5 (full length and without mitochondrial presequence), has led to its increased enzyme activity. Further, it was demonstrated that overexpression of full-length POS5 has improved squalene synthesis in cytosol. Finally, when tHMG1 and full-length POS5 were co-overexpressed there was a net 27.5-fold increase in squalene when compared to control strain. These results suggest novel strategies to increase squalene accumulation in S. cerevisiae.
A critical factor in simultaneous saccharification and fermentation (SSF) is the selection of process temperature, which needs to be a compromise between the optimal temperature for enzymatic hydrolysis and that for fermentation. In the present work, isothermal and nonisothermal SSF was experimentally studied using pretreated spruce and arundo materials at a loading of 10% water insoluble solids, with an industrial strain of Saccharomyces cerevisiae as the fermenting organism. In the nonisothermal experiments, the temperatures were linearly increased during the batch time of 96 h, and the results were compared to isothermal SSF operation. The final ethanol concentrations obtained for the arundo material was 16.5 g/L in the nonisothermal process using an initial temperature of 32 °C and a linearly increasing temperature of 0.135 °C/h. As a comparison, the final ethanol concentration obtained was 13.4 g/L for an isothermal operation at 32 °C and 15.3 g/L for an isothermal process running at 39 °C. The corresponding values for the spruce material were 33.1 g/L, and 29.1 g/L and 32.2 g/L, for nonisothermal and isothermal operation at 32 and 39 °C, respectively. The obtained ethanol yields, in particular for the case of arundo, demonstrate that nonisothermal SSF operation can give increased ethanol yields in comparison to isothermal SSF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.