The five-tier GG system increased accuracy for predicting treatment failure compared with the previous grading systems, but can be further improved.
Background To define a new coefficient to be used in the formula (Volume = L x H x W x Coefficient) that better estimates prostate volume using dimensions of fresh prostates from patients who had transrectal ultrasound (TRUS) imaging prior to prostatectomy. Methods The prostate was obtained from 153 patients, weighed and measured to obtain length (L), height (H), and width (W). The density was determined by water displacement to calculate volume. TRUS data were retrieved from patient charts. Linear regression analyses were performed to compare various prostate volume formulas, including the commonly used ellipsoid formula and newly introduced bullet-shaped formula. Results By relating measured prostate volumes from fresh prostates to TRUS-estimated prostate volumes, 0.66 was the best fitting coefficient in the (L x H x W x Coefficient) equation. This newfound coefficient combined with outlier removal yielded a linear equation with an R 2 of 0.64, compared to 0.55 and 0.60, for the ellipsoid and bullet, respectively. By comparing each of the measured vs. estimated dimensions, we observed that the mean prostate height and length were overestimated by 11.1 and 10.8% using ultrasound ( p < 0.05), respectively, while the mean width was similar ( p > 0.05). Overall, the ellipsoid formula underestimates prostate volumes by 18%, compared to an overestimation of 4.6 and 5.7% for the bullet formula and the formula using our coefficient, respectively. Conclusions This study defines, for the first time, a coefficient based on freshly resected prostates as a reference to estimate volumes by imaging. Our findings support a bullet rather than an ellipsoid prostate shape. Moreover, substituting the coefficient commonly used in the ellipsoid formula by our calculated coefficient in the equation estimating prostate volume by TRUS, provides a more accurate value of the true prostate volume.
Detection of unique oncogenic alterations encoded by the sequence or biochemical modification in cancer-associated transforming macromolecules has revolutionized diagnosis, classification and management of human cancers. While these signatures were traditionally regarded as largely intracellular and confined to the tumor mass, oncogenic mutations and actionable cancer-related molecular alterations can also be accessed remotely through their recovery from biofluids of either rare circulating tumor cells (CTCs), or of more abundant non-cellular carriers, such as extracellular vesicles (EVs), protein complexes, or cell-free tumor DNA (ctDNA). Tumor-related macromolecules may also accumulate in circulating platelets. Collectively, these approaches are known as liquid biopsy and hold promise as non-invasive, real-time opportunities to access to the evolving molecular landscape of human malignancies. More recently, a possibility of recovering cancer-specific DNA sequences from circulating leukocytes has also been postulated using experimental models. While it is often assumed that these and other liquid biopsy approaches rely on material passively shed from the tumor mass or its debris, recent evidence suggests that several regulated processes contribute to the abundance, nature, half-life, and turnover of different circulating cancer-related molecular signals. Moreover, many of these signals possess biological activity and may elicit local and systemic regulatory responses. Thus, a better understanding of the biology of liquid biopsy platforms and analytes may enable achieving improved performance of this promising and emerging diagnostic strategy in cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.