How does nonequilibrium activity modify the approach to a glass? This is an important question, since many experiments reveal the near-glassy nature of the cell interior, remodeled by activity. However, different simulations of dense assemblies of active particles, parametrized by a self-propulsion force, [Formula: see text], and persistence time, [Formula: see text], appear to make contradictory predictions about the influence of activity on characteristic features of glass, such as fragility. This calls for a broad conceptual framework to understand active glasses; here, we extend the random first-order transition (RFOT) theory to a dense assembly of self-propelled particles. We compute the active contribution to the configurational entropy through an effective model of a single particle in a caging potential. This simple active extension of RFOT provides excellent quantitative fits to existing simulation results. We find that whereas [Formula: see text] always inhibits glassiness, the effect of [Formula: see text] is more subtle and depends on the microscopic details of activity. In doing so, the theory automatically resolves the apparent contradiction between the simulation models. The theory also makes several testable predictions, which we verify by both existing and new simulation data, and should be viewed as a step toward a more rigorous analytical treatment of active glass.
The physics of active systems of self-propelled particles, in the regime of a dense liquid state, is an open puzzle of great current interest, both for statistical physics and because such systems appear in many biological contexts. We develop a nonequilibrium mode-coupling theory (MCT) for such systems, where activity is included as a colored noise with the particles having a self-propulsion foce f0 and persistence time τp. Using the extended MCT and a generalized fluctuation-dissipation theorem, we calculate the effective temperature T ef f of the active fluid. The nonequilibrium nature of the systems is manifested through a time-dependent T ef f that approaches a constant in the longtime limit, which depends on the activity parameters f0 and τp. We find, phenomenologically, that this long-time limit is captured by the potential energy of a single, trapped active particle (STAP). Through a scaling analysis close to the MCT glass transition point, we show that τα, the α-relaxation time, behaves as τα ∼ f −2γ 0 , where γ = 1.74 is the MCT exponent for the passive system. τα may increase or decrease as a function of τp depending on the type of active force correlations, but the behavior is always governed by the same value of the exponent γ. Comparison with numerical solution of the nonequilibrium MCT as well as simulation results give excellent agreement with the scaling analysis.
Proteins self-organization is a hallmark of biological systems. Physico-chemical principles governing protein-protein interactions have long been known. However, the principles by which such nanoscale interactions generate diverse phenotypes of mesoscale assemblies, including phase-separated compartments, remain challenging to characterize. To illuminate such principles, we create a system of two proteins designed to interact and form mesh-like assemblies. We devise a novel strategy to map high-resolution phase diagrams in living cells, which provide self-assembly signatures of this system. The structural modularity of the two protein components allows straightforward modification of their molecular properties, enabling us to characterize how interaction affinity impacts the phase diagram and material state of the assemblies in vivo. The phase diagrams and their dependence on interaction affinity were captured by theory and simulations, including out-of-equilibrium effects seen in growing cells. Finally, we find that cotranslational protein binding suffices to recruit an mRNA to the designed micron-scale structures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.