A security constrained non-convex power dispatch problem with prohibited operation zones and ramp rates is formulated and solved using an iterative solution method based on the feasible modified sub-gradient algorithm (FMSG). Since the cost function, all equality and inequality constraints in the nonlinear optimization model are written in terms of the bus voltage magnitudes, phase angles, off-nominal tap settings, and the Susceptance values of static VAR (SVAR) systems, they can be taken as independent variables. The actual power system loss is included in the current approach and the load flow equations are inserted into the model as the equality constraints. The proposed modified sub gradient based combined objective technique and evolutionary programming approach (MSGBCAEP) with as decision variable and cost function as fitness function is tested on the IEEE 30-bus 6 generator test case system. The absence of crossover operation and adoption of fast judicious modifications in initialization of parent population, offspring generation and normal distribution curve selection in EP enables the proposed MSGBCAEP approach to ascertain global optimal solution for cost of generation and emission level shown in Table 6 and displayed in Figure 2 and Figure 3 respectively.
<p>Since a multi area system (MAS) is characterized by momentary overshoot, undershoot and intolerable settling time so, neutral copper conductors are replaced by multilayer zigzag graphene nano ribbon (MLGNR) interconnects that are tremendously advantageous to copper interconnects for the future transmission line conductors necessitated for economic and emission dispatch (EED) of electric supply system giving rise to reduced overshoots and settling time and greenhouse effect as well. The recent work includes combinatorial algorithm involving proportional integral and derivative controller and heuristic swarm optimization; we say it as Hybrid- particle swarm optimization (PSO) controller. The modeling of two multi area systems meant for EED is carried out by controlling the conventional proportional integral and derivative (PID) controller regulated and monitored by quantum behaved artificial bee colony (ABC) optimization based PID (QABCOPID) controller in MATLAB/Simulink platform. After the modelling and simulation of QABCOPID controller it is realized that QABCOPID is better as compared to multi span double display (MM), neural network based PID (NNPID), multi objective constriction PSO (MOCPSO) and multi objective PSO (MOPSO). The real power generation fixed by QABCOPID controller is used to estimate the combined cost and emission objectives yielding optimal solution, minimum losses and maximum efficiency of transmission line.</p>
<span lang="EN-US">Traditional methods indispensably necessitate monotonically increasing characteristic for fuel cost of generators in a thermal power plant. However, in medium and large thermal power plants, this condition is a dream to accomplish. So, to meet out these exigencies heuristic methods like swarm optimization technique, genetic algorithm technique and bee colony based hybrid solar thermal technology (BHSTT) are used to realize the practical nonlinearities associated with valve point loading emanated out of multi-valving effect, associated with power station. However, the heuristic methods too face challenges arising out of bulky thermal power plants adopting cubic cost functions and possessing stringent non-convex economic dispatch problem following multi-valving and erratic behavior of nonlinear loads at the load center. So, at its favor function evaluation method dealing with cubic cost function is attempted in this dissertation to yield a satisfactory optimal solution for economic dispatch problem. This method deals with the real power generation of producing units as well as the complex power of units, as well as dealing with severe nonlinear stringent fuel cost characteristics that are prevalent in today’s bulky thermal power plants. In comparison to previous approaches, the findings achieved are highly encouraging.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.