Background The colibactin and cytotoxic necrotizing factor 1 (Cnf 1) are toxins with cell cycle modulating effects that contribute to tumorgenesis and hyperproliferation. This study aimed to investigate the prevalence and pathologic effects of Cnf 1 and colibactin among hemolytic uropathogenic Escherichia coli ( UPEC ). The bioinformatics approach incorporated in this study aimed to expand the domain of the in vitro study and explore the prevalence of both toxins among other bacterial species. A total of 125 E. coli isolates were recovered from UTIs patients. The isolates were tested for their hemolytic activity, subjected to tissue culture and PCR assays to detect the phenotypic and genotypic features of both toxins. A rat ascending UTI in vivo model was conducted using isolates expressing or non-expressing Cnf 1 and colibactin (ClbA and ClbQ). The bioinformatics analyses were inferred by Maximum likelihood method and the evolutionary relatedness was deduced by MEGA X. Results Only 21 (16.8%) out of 125 isolates were hemolytic and 10 of these (47.62%) harbored the toxins encoding genes ( cnf 1 + , clbA + and clbQ + ). The phenotypic features of both toxins were exhibited by only 7 of the ( cnf 1 + clbA + clbQ + ) harboring isolates. The severest infections, hyperplastic and genotoxic changes in kidneys and bladders were observed in rats infected with the cnf 1 + clbA + clbQ + isolates. Conclusion Only 33.3% of the hemolytic UPEC isolates exhibited the phenotypic and genotypic features of Cnf 1 and Colibactin. The in vivo animal model results gives an evidence of active Cnf 1 and Colibactin expression and indicates the risks associated with recurrent and chronic UTIs caused by UPEC . The bioinformatics analyses confirmed the predominance of colibactin pks island among Enterobacteriaceae family (92.86%), with the highest occurrence among Escherichia species (53.57%), followed by Klebsiella (28.57%), Citrobacter (7.14%), and Enterobacter species (3.57%). The Cnf 1 is predominant among Escherichia coli (94.05%) and sporadically found among Shigella species (1.08%), Salmonella enterica (0.54%), Yersinia pseudotuberculosis (1.08%), Photobacterium (1.08%), Moritella viscosa (0.54%), and ...
Dental Caries is considered one of the most existing and worldwide common diseases related to the oral cavity affecting both children and adults. Streptococcus mutans is the main cariogenic microorganism involved in the dental caries progression. Natural products such as herbal plants were found to have less side effects and economic value than those of the chemically synthesized antibiofilm agents. This study aimed to isolate Streptococcus mutans from different oral samples taken from saliva and dental plaques specimens to determine their capability for biofilm formation and to evaluate the antibiofilm activity of aqueous and alcoholic green tea extracts. The results revealed that 35, 4 and 1% of recovered dental plaque isolates exhibited strong, moderate and weak biofilm formation capabilities versus 26, 12 and 2% for those recovered from saliva. Two green tea extracts (aqueous and alcoholic) were tested for their antibiofilm formation activity against some selected S. mutans isolates. The results showed that the minimum biofilm inhibitory concentrations (MBICs) of the alcoholic and aqueous green tea extracts were in the range of 3.1 to 12.5 mg/ml and 6.5 to 50 mg/ml, respectively. Accordingly, green tea extracts can be incorporated in various oral preparations for preventing dental caries.
Gram-negative bacteria are common causes of urinary tract infections (UTIs). Such pathogens can acquire genes encoding multiple mechanisms of antimicrobial resistance, including carbapenem resistance. The aim of this study was to detect the carbapenemase-producing ability of some Gram-negative bacterial isolates from urine specimens of patients suffering from complicated UTIs at two vital tertiary care hospitals in Cairo, Egypt; to determine the prevalence of carbapenemase genes among plasmid-bearing isolates; and explore the possibility of horizontal gene transfer to other bacterial species. The collected isolates were subjected to antimicrobial susceptibility testing, phenotypic analysis of carbapenemase production, and molecular detection of plasmid-borne carbapenemase genes, then the extracted plasmids were transformed into competent E. coli DH5α. A total of 256 Gram-negative bacterial clinical isolates were collected, 65 (25.4%) isolates showed carbapenem resistance of which 36 (55.4%) were carbapenemase-producers, and of these 31 (47.7%) harbored plasmids. The extracted plasmids were used as templates for PCR amplification of blaKPC, blaNDM, blaVIM, blaOXA-48, and blaIMP carbapenemase genes. The blaOXA-48 gene was detected in 24 (77.4%) of the tested isolates while blaVIM gene was detected in 8 (25.8%), both blaKPC and blaNDM genes were co-present in 1 (3.2%) isolate. Plasmids carrying the blaOXA-48 gene from 4 K. pneumoniae clinical isolates were successfully transformed into competent E. coli DH5α. The transformants were carbapenemase-producers and acquired resistance to some of the tested antimicrobial agents as compared to untransformed E. coli DH5α. The study concluded that the rate of carbapenem resistance among Gram-negative bacterial uropathogens in Cairo, Egypt is relatively high and can be transferred horizontally to other bacterial host(s).
Staphylococcus aureus is a fatal Gram-positive pathogen threatening numerous cases of hospital-admitted patients worldwide. The emerging resistance of the pathogen to several antimicrobial agents has pressurized research to propose new strategies for combating antimicrobial resistance. Novel strategies include targeting the virulence factors of S. aureus. One of the most prominent virulence factors of S. aureus is its eponymous antioxidant pigment staphyloxanthin (STX), which is an auspicious target for anti-virulence therapy. This review provides an updated outline on STX and multiple strategies to attenuate this virulence factor. The approaches discussed in this article focus on bioprospective and chemically synthesized inhibitors of STX, inter-species communication and genetic manipulation. Various inhibitor molecules were found to exhibit appreciable inhibitory effect against STX and hence would be able to serve as potential anti-virulence agents for clinical use.
Fungal infections represent an enormous load on the public especially with the development of resistance to the most currently used antifungal drugs in practice. In the present work, a bacterial isolate coded A3 was recovered from soil and was shown to express antagonistic activity against Candida (C.) albicans ATCC 10231. This isolate was identified as Bacillus (B.) subtilis subsp. spizizenii isolate CCASU 2021-4 using 16S ribosomal RNA sequencing. D-optimal design from response surface methodology (RSM) was used to optimize the environmental variables affecting the antifungal activity of the respective isolate. The optimum conditions were a temperature of 30 °C, a pH of 8, and an inoculum size of 5 x 10 7 cfu/mL, resulting in an enhancement in the antifungal activity by 1.2 fold. This is the first report, to the best of our knowledge, on an antifungal activity from B. subtilis subsp. spizizenii culture broth against human fungal pathogens along with its optimization through RSM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.