The atmosphere is an important (1) pathway by which mercury (Hg) is transported around the globe and (2) source of Hg to ecosystems. Thus, understanding Hg atmospheric chemistry is critical for understanding the biogeochemical cycle and impacts to human and ecosystem health. Work over the past 13 years has demonstrated that the standard instrument used to measure atmospheric Hg does not accurately quantify gaseous oxidized mercury (GOM) or particulate bound mercury (PBM). This study focused on comparing four methods for quantifying atmospheric Hg and identifying Hg(II) compounds. Data from two automated systems, the Tekran 2537/1130 system and the University of Nevada, Reno-Dual Channel System (DCS), were compared with two University of Nevada, Reno-Reactive Mercury Active Systems (RMAS 2.0). One RMAS 2.0 included cation exchange membranes (CEMs) and nylon membranes, and the second included a polytetrafluoroethylene (PTFE) membrane upstream of the CEM and nylon membranes. The Tekran system and the DCS underestimated GOM concentrations with respect to that measured using the RMAS 2.0. The RMAS 2.0 with the upstream PTFE provided a means of distinguishing GOM and PBM. Thermal desorption of nylon membrane data identified a variety of GOM and PBM compounds present.
To advance our understanding of the mercury (Hg) biogeochemical cycle, concentrations and chemistry of gaseous oxidized Hg (GOM), particulate-bound Hg (PBM), and reactive Hg (RM = GOM + PBM) need to be known. The UNR-RMAS 2.0 provides a solution that will advance knowledge. From 11/2017 to 02/2019, the RMAS 2.0 was deployed in Hawai'i, Nevada, Maryland, and Utah to test system performance and develop an understanding of RM at locations impacted by different atmospheric oxidants. Mauna Loa Observatory, Hawai'i, impacted by the free troposphere and the marine boundary layer, had primarily −Br/Cl RM compounds. The Nevada location, directly adjacent to a major interstate highway and experiences inputs from the free troposphere, exhibited −Br/Cl, −N, −S, and organic compounds. In Maryland, compounds observed were −N, −S, and organic-Hg. This site is downwind of coal-fired power plants and located in a forested area. The location in Utah is in a basin impacted by oil and natural gas extraction, multiday wintertime inversion episodes, and inputs from the free troposphere. Compounds were −Br/Cl or −O, −N, and −Br/Cl. The chemical forms of RM identified were consistent with the air source areas, predominant ion chemistry, criterion air pollutants, and meteorology.
The mobility of uranium (U) in subsurface environments is controlled by interrelated adsorption, redox, and precipitation reactions. Previous work demonstrated the formation of nanometer-sized hydrogen uranyl phosphate (abbreviated as HUP) crystals on the cell walls of Bacillus subtilis, a non-U(VI)-reducing, Gram-positive bacterium. The current study examined the reduction of this biogenic, cell-associated HUP mineral by three dissimilatory metal-reducing bacteria, Anaeromyxobacter dehalogenans strain K, Geobacter sulfurreducens strain PCA, and Shewanella putrefaciens strain CN-32, and compared it to the bioreduction of abiotically formed and freely suspended HUP of larger particle size. Uranium speciation in the solid phase was followed over a 10- to 20-day reaction period by X-ray absorption fine structure spectroscopy (XANES and EXAFS) and showed varying extents of U(VI) reduction to U(IV). The reduction extent of the same mass of HUP to U(IV) was consistently greater with the biogenic than with the abiotic material under the same experimental conditions. A greater extent of HUP reduction was observed in the presence of bicarbonate in solution, whereas a decreased extent of HUP reduction was observed with the addition of dissolved phosphate. These results indicate that the extent of U(VI) reduction is controlled by dissolution of the HUP phase, suggesting that the metal-reducing bacteria transfer electrons to the dissolved or bacterially adsorbed U(VI) species formed after HUP dissolution, rather than to solid-phase U(VI) in the HUP mineral. Interestingly, the bioreduced U(IV) atoms were not immediately coordinated to other U(IV) atoms (as in uraninite, UO2) but were similar in structure to the phosphate-complexed U(IV) species found in ningyoite [CaU(PO4)2·H2O]. This indicates a strong control by phosphate on the speciation of bioreduced U(IV), expressed as inhibition of the typical formation of uraninite under phosphate-free conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.