In this paper, we investigate four different types of Ulam stability, i.e., Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias stability for a class of nonlinear implicit fractional differential equations with non-instantaneous integral impulses and nonlinear integral boundary condition. We also establish certain conditions for the existence and uniqueness of solutions for such a class of fractional differential equations using Caputo fractional derivative. The arguments are based on generalized Diaz-Margolis's fixed point theorem. We provide two examples, which shows the validity of our main results.
This paper deals with a new class of non-linear impulsive sequential fractional differential equations with multi-point boundary conditions using Caputo fractional derivative, where impulses are non instantaneous. We develop some sufficient conditions for existence, uniqueness and different types of Ulam stability, namely Hyers–Ulam stability, generalized Hyers–Ulam stability, Hyers–Ulam–Rassias stability and generalized Hyers–Ulam–Rassias stability for the given problem. The required conditions are obtained using fixed point approach. The validity of our main results is shown with the aid of few examples.
In this article, we prove some strong and weak convergence theorems for quasi-nonexpansive multivalued mappings in Banach spaces. The iterative process used is independent of Ishikawa iterative process and converges faster. Some examples are provided to validate our results. Our results extend and unify some results in the contemporary literature.
The purpose of this paper is to investigate some convergence theorems in fixed point theory for ρ-quasi-nonexpansive multivalued mappings in modular function spaces using a faster iterative process. Examples are provided to validate our results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.