The detailed reservoir characterization was examined for the Central Indus Basin (CIB), Pakistan, across Qadirpur Field Eocene rock units. Various petrophysical parameters were analyzed with the integration of various cross-plots, complex water saturation, shale volume, effective porosity, total porosity, hydrocarbon saturation, neutron porosity and sonic concepts, gas effects, and lithology. In total, 8–14% of high effective porosity and 45–62% of hydrocarbon saturation are superbly found in the reservoirs of the Eocene. The Sui Upper Limestone is one of the poorest reservoirs among all these reservoirs. However, this reservoir has few intervals of rich hydrocarbons with highly effective porosity values. The shale volume ranges from 30 to 43%. The reservoir is filled with effective and total porosities along with secondary porosities. Fracture–vuggy, chalky, and intracrystalline reservoirs are the main contributors of porosity. The reservoirs produce hydrocarbon without water and gas-emitting carbonates with an irreducible water saturation rate of 38–55%. In order to evaluate lithotypes, including axial changes in reservoir characterization, self-organizing maps, isoparametersetric maps of the petrophysical parameters, and litho-saturation cross-plots were constructed. Estimating the petrophysical parameters of gas wells and understanding reservoir prospects were both feasible with the methods employed in this study, and could be applied in the Central Indus Basin and anywhere else with comparable basins.
The China-Pakistan Economic Corridor (CPEC) is an ongoing mega-construction project in Pakistan that necessitates further exploration of new natural resources of aggregate to facilitate the extensive construction. Therefore, the Late Permian strata of Chhidru and Wargal Limestone for aggregates resources were envisaged to evaluate their optimal way of construction usage through detailed geotechnical, geochemical, and petrographic analyses. Geotechnical analysis was performed under BS and ASTM standards with the help of employing different laboratory tests. A simple regression analysis was employed to ascertain mutual correlations between physical parameters. Based on the petrographic analysis, the Wargal Limestone is classified into mudstones and wackestone, and Chhidru Formation is categorized into wackestone and floatstone microfacies, both containing primary constituents of calcite and bioclasts. The geochemical analysis revealed that the Wargal Limestone and Chhidru Formation encompass calcium oxide (CaO) as the dominant mineral content. These analyses also depicted that the Wargal Limestone aggregates bear no vulnerability to alkali-aggregate reactions (AAR), whereas the Chhidru Formation tends to be susceptible to AAR and deleterious. Moreover, the coefficient of determination and strength characteristics, for instance, unconfined compressive strength and point load test were found inversely associated with bioclast concentrations and directly linked to calcite contents. Based on the geotechnical, petrographic, and geochemical analyses, the Wargal Limestone proved to be a significant potential source for both small and large-scale construction projects, such as CPEC, but the Chhidru Formation aggregates should be used with extra caution due to high silica content.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.