We use ultrasensitive electron backscatter diffraction (EBSD) to map the local crystal orientations, grains, and grain boundaries in CH3NH3PbI3 (MAPI) perovskite thin films. Although the true grain structure is broadly consistent with the morphology visible in scanning electron microscopy (SEM), the inverse pole figure maps taken with EBSD reveal grain structure and internal misorientation that is otherwise hidden. Local crystal misorientation is consistent with the presence of local strain which varies from one grain to the next. We acquire co-aligned confocal optical photoluminescence (PL) microscopy images on the same MAPI samples used for EBSD. We correlate optical and EBSD data, showing that PL is anticorrelated with the local grain orientation spread, suggesting that grains with higher degrees of crystalline orientational heterogeneity (local strain) exhibit more non-radiative recombination. We find that larger grains tend to have larger grain orientation spread, consistent with higher degrees of strain and nonradiative recombination.
We explore the effects of nonradiative recombination at the extracting contacts on the achievable performance of halide perovskite photovoltaic cells. First, we perform device simulations using standard drift-diffusion models with experimental semiconductor parameters matching those of methylammonium lead triiodide (MAPbI 3 ). We quantify the range of surface recombination velocities (SRVs) that would allow this archetypal perovskite to reach power conversion efficiencies of 27%. In particular, for contacts with well-aligned energy levels, SRVs of ∼1−10 cm/s should enable open-circuit voltages of 1.30 V, within 96% of the Shockley−Queisser limit. Next, we use time-resolved photoluminescence to experimentally determine the SRVs on 14 different common electron-and hole-extracting contacts, including TiO 2 , SnO 2 , ZnO, PCBM, ITIC, ICBA, TPBi, PEDOT:PSS, PTAA, PVK, NiO, MoO 3 , WO 3 , and spiro-OMeTAD. These results point the way to the selection and rational engineering of better contacts as a means to achieve higher efficiencies in perovskite solar cells.
We use correlated confocal and wide-field fluorescence microscopy to probe the interplay between local variations in charge carrier recombination and charge carrier transport in methylammonium lead triiodide perovskite thin films. We find that local photoluminescence variations present in confocal imaging are also observed in wide-field imaging, while intensity-dependent confocal measurements show that the heterogeneity in nonradiative losses observed at low excitation powers becomes less pronounced at higher excitation powers. Both confocal and wide-field images show that carriers undergo anisotropic diffusion due to differences in intergrain connectivity. These data are all qualitatively consistent with trap-dominated variations in local photoluminescence intensity and with grain boundaries that exhibit varying degrees of opacity to carrier transport. We use a two-dimensional kinetic model to simulate and compare confocal time-resolved photoluminescence decay traces with experimental data. The simulations further support the assignment of local variations in nonradiative recombination as the primary cause of photoluminescence heterogeneity in the films studied herein. These results point to surface passivation and intergrain connectivity as areas that could yield improvements in perovskite solar cells and optoelectronic device performance.
We study the impact of excitation energy on the photostability of methylammonium lead triiodide (CHNHPbI or MAPI) perovskite thin films. Light soaking leads to a transient increase of the photoluminescence efficiency at excitation wavelengths longer than 520 nm, whereas light-induced degradation occurs when exciting the films with wavelengths shorter than 520 nm. X-ray diffraction and extinction measurements reveal the light-induced decomposition of CHNHPbI to lead iodide (PbI) for the high-energy excitation regime. We propose a model explaining the energy dependence of the photostability that involves the photoexcitation of residual PbI species in the perovskite triggering the decomposition of CHNHPbI.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.