The tadpole-type larva of Ciona has emerged as an intriguing model system for the study of neurodevelopment. The Ciona intestinalis connectome has been recently mapped, revealing the smallest central nervous system (CNS) known in any chordate, with only 177 neurons. This minimal CNS is highly reminiscent of larger CNS of vertebrates, sharing many conserved developmental processes, anatomical compartments, neuron subtypes, and even specific neural circuits. Thus, the Ciona tadpole offers a unique opportunity to understand the development and wiring of a chordate CNS at single-cell resolution. Here we report the use of single-cell RNAseq to profile the transcriptomes of single cells isolated by fluorescence-activated cell sorting (FACS) from the whole brain of Ciona robusta (formerly intestinalis Type A) larvae. We have also compared these profiles to bulk RNAseq data from specific subsets of brain cells isolated by FACS using cell type-specific reporter plasmid expression. Taken together, these datasets have begun to reveal the compartment-and cell-specific gene expression patterns that define the organization of the Ciona larval brain.
The central nervous system of the Ciona larva contains only 177 neurons. The precise regulation of neuron subtype-specific morphogenesis and differentiation observed in during the formation of this minimal connectome offers a unique opportunity to dissect gene regulatory networks underlying chordate neurodevelopment. Here we compare the transcriptomes of two very distinct neuron types in the hindbrain/spinal cord homolog of Ciona, the Motor Ganglion (MG): the Descending decussating neuron (ddN, proposed homolog of Mauthner Cells in vertebrates) and the MG Interneuron 2 (MGIN2). Both types are invariantly represented by a single bilaterally symmetric left/right pair of cells in every larva. Supernumerary ddNs and MGIN2s were generated in synchronized embryos and isolated by fluorescence-activated cell sorting for transcriptome profiling. Differential gene expression analysis revealed ddN-and MGIN2specific enrichment of a wide range of genes, including many encoding potential "effectors" of subtype-specific morphological and functional traits. More specifically, we identified the upregulation of centrosome-associated, microtubule-stabilizing/bundling proteins and extracellular matrix proteins and axon guidance cues as part of a single intrinsic regulatory program that might underlie the unique polarization of the ddNs, the only descending MG neurons that cross the midline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.