The aerodynamic performance of the National Renewable Energy Laboratory (NREL) Phase VI horizontal axis wind turbine (HAWT) under yawed flow conditions is studied using a three-dimensional unsteady viscous flow analysis. Simulations have been performed for upwind cases at several wind speeds and yaw angles. Results presented include radial distribution of the normal and tangential forces, shaft torque, root flap moment, and surface pressure distributions at selected radial locations. The results are compared with the experimental data for the NREL Phase VI rotor. At low wind speeds (∼7m∕s) where the flow is fully attached, even an algebraic turbulence model based simulation gives good agreement with measurements. When the flow is massively separated (wind speed of 20m∕s or above), many of the computed quantities become insensitive to turbulence and transition model effects, and the calculations show overall agreement with experiments. When the flow is partially separated at wind speed above 15m∕s, encouraging results were obtained with a combination of the Spalart-Allmaras turbulence model and Eppler’s transition model only at high enough wind speeds.
The aerodynamic performance of a wind turbine rotor equipped with circulation enhancement technology (trailing-edge blowing or Gurney flaps) is investigated using a three-dimensional unsteady viscous flow analysis. The National Renewable Energy Laboratory Phase VI horizontal axis wind turbine is chosen as the baseline configuration. Experimental data for the baseline case is used to validate the flow solver, prior to its use in exploring these concepts. Calculations have been performed for axial and yawed flow at several wind conditions. Results presented include radial distribution of the normal and tangential forces, shaft torque, root flap moment, and surface pressure distributions at selected radial locations. At low wind speed (7m∕s) where the flow is fully attached, it is shown that a Coanda jet at the trailing edge of the rotor blade is effective at increasing circulation resulting in an increase of lift and the chordwise thrust force. This leads to an increased amount of net power generation compared to the baseline configuration for moderate blowing coefficients (Cμ⩽0.075). A passive Gurney flap was found to increase the bound circulation and produce increased power in a manner similar to Coanda jet. At high wind speed (15m∕s) where the flow is separated, both the Coanda jet and Gurney flap become ineffective. The effects of these two concepts on the root bending moments have also been studied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.