A chitinolytic bacterial strain having strong antifungal activity was isolated and identified as Burkholderia cepacia MPC-7 based on 16S rRNA gene analysis. MPC-7 solubilized insoluble phosphorous in hydroxyapatite agar media. It produced gluconic acid and 2-ketogluconic acid related to the decrease in pH of broth culture. The antagonist produced benzoic acid (BA) and phenylacetic acid (PA). The authentic compounds, BA and PA, showed a broad spectrum of antimicrobial activity against yeast, several bacterial and fungal pathogens in vitro. To demonstrate the biocontrol efficiency of MPC-7 on late blight disease caused by Phytophthora capsici, pepper plants in pot trials were treated with modified medium only (M), M plus zoospore inoculation (MP), MPC-7 cultured broth (B) and B plus zoospore inoculation (BP). With the sudden increase in root mortality, plants in MP wilted as early as five days after pathogen inoculation. However, plant in BP did not show any symptom of wilting until five days. Root mortality in BP was markedly reduced for as much as 50%. Plants in B had higher dry weight, P concentration in root, and larger leaf area compared to those in M and MP. These results suggested that B. cepacia MPC-7 should be considered as a candidate for the biological fertilizer as well as antimicrobial agent for pepper plants.
This study established a relationship between the chemical and microbial compositions of Cambodian fermented fish products, which provides a basis for preservation and maturation. These data could be beneficial in the manufacturing of these products in terms of microbial control and quality stabilisation.
Aims: This study aims to evaluate the effectiveness of bacteriophages isolated from Klang and Penang, Malaysia against Dickeya chrysanthemi that causes soft rot disease. Methodology and results: Basic characterization such as dextrose test, citrate test, lactose fermentation test and ornithine test were carried out on D. chrysanthemi. Activity of bacteriophages against D. chrysanthemi was evaluated using spot test. Double agar overlay assay was performed to purify and enumerate the quantify of bacteriophages. Bacteriophages were also checked for its effectiveness in controlling soft rot on post-harvested vegetables: potato (Solanum tuberosum), cucumber (Cucumis sativus) and apple (Malus domestica). Results showed that D. chrysanthemi able to utilize citrate and dextrose as the source of energy, which indicated that D. chrysanthemi inclined to choose fruits and vegetables containing citrate and dextrose as the target of attack. Clear zone observed on the bacterial lawn (spot test) indicated the ability of the bacteriophages to infect and lyse D. chrysanthemi. All the bacteriophages studied herein reached the highest concentration on day 3 and were monovalent. Conclusion, significance and impact of study: All the isolated bacteriophages were able to restrain the spreading of soft rot caused by D. chrysanthemi either work alone or as cocktail. This study provides information for the formulation development of bacteriophage against soft rot disease cause by D. chrysanthemi. Furthermore, this study reveals the potential of locally isolated bacteriophages against the D. chrysanthemi and paving the application of phage treatment on agriculture products that are not limited to potatoes, cucumber and apple.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.