In this study, the authors focus on the structural design of and recovery methods for a damaged quadruped robot with a limited number of functional legs. Because the pre-designed controller cannot be executed when the robot is damaged, a control strategy to avoid task failures in such a scenario should be developed. Not only the control method but also the shape and structure of the robot itself are significant for the robot to be able to move again after damage. We present a caterpillar-inspired quadruped robot (CIQR) and a self-learning mudskipper inspired crawling (SLMIC) algorithm in this research. The CIQR is realized by imitating the prolegs of caterpillars and by using a numerical optimization technique. A reinforcement learning method called Q-learning is employed to improve the adaptability of locomotion based on the crawling behavior of mudskipper. The results show that the proposed robotic platform and recovery method can improve the moving ability of the damaged quadruped robot with a few active legs in both simulations and experiments. Moreover, we obtained satisfactory results showing that a damaged multi-legged robot with at least one leg could travel properly along the required direction. Furthermore, the presented algorithm can successfully be employed in a damaged quadruped robot with fewer than four legs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.