Traumatic brain injury (TBI) produces a rapid and excessive elevation in extracellular glutamate associated with excitotoxicity and secondary brain pathology. The peptide neurotransmitter Nacetylaspartylglutamate (NAAG) suppresses glutamate transmission through selective activation of presynaptic Group II metabotropic glutamate receptor subtype 3 (mGluR3). Thus, inhibition of NAAG peptidase activity and the prolong presence of synaptic NAAG were hypothesized to have significant potential for cellular protection following TBI. In the present study, a novel NAAG peptidase inhibitor, ZJ-43, was used in four different doses (0, 50, 100, or 150 mg/kg). Each dose was repeatedly administered i.p. (n=5/group) by multiple injections at three times (0 time, 8 h, 16 h) after moderate lateral fluid percussion TBI in the rat. An additional group was co-administered ZJ-43 (150 mg/kg) and the Group II mGluR antagonist, LY341495 (1 mg/kg), which was predicted to abolish any protective effects of ZJ-43. Rats were euthanized at 24 h after TBI, and brains were processed with a selective marker for degenerating neurons (Fluoro-Jade B) and a marker for astrocytes (GFAP). Ipsilateral neuronal degeneration and bilateral astrocyte loss in the CA2/3 regions of the hippocampus were quantified using stereological techniques. Compared with vehicle, ZJ-43 significantly reduced the number of the ipsilateral degenerating neurons (p<0.01) with the greatest neuroprotection at the 50 mg/kg dose. Moreover, LY341495 successfully abolished the protective effects of ZJ-43. 50 mg/kg of ZJ-43 also significantly reduced the ipsilateral astrocyte loss (p<0.05). We conclude that the NAAG peptidase inhibitor ZJ-43 is a potential novel strategy to reduce both neuronal and astrocyte damage associated with the glutamate excitotoxicity after TBI.
The peptide neurotransmitter N-acetylaspartylglutamate (NAAG) selectively activates group II metabotropic glutamate receptors (mGluRs). Systemic administration of inhibitors of the enzymes that inactivate NAAG results in decreased pain responses in rat models of inflammatory and neuropathic pain. These effects are blocked by a group II mGluR antagonist. This research tested the hypothesis that some analgesic effects of NAAG peptidase inhibition are mediated by NAAG acting on sensory neurite mGluRs at the site of inflammation. Group II mGluR agonists, SLx-3095-1, NAAG and APDC, or NAAG peptidase inhibitors, ZJ-43 and 2-PMPA, injected into the rat footpad reduced pain responses in carrageenan or formalin models. The analgesic effects of SLx-3095-1, APDC, ZJ-43, 2-PMPA and NAAG were blocked by co-injection of LY341495, a selective group II mGluR antagonist. Injection of group II mGluR agonists, NAAG or the peptidase inhibitors into the contralateral rat footpad had no effect on pain perception in the injected paw. At 10-100 microm ZJ-43 and 2-PMPA demonstrated no consistent agonist activity at mGluR2 or mGluR3. Consistent with the conclusion that peripherally administered NAAG peptidase inhibitors increase the activation of mGluR3 by NAAG that is released from peripheral sensory neurites, we found that the tissue average concentration of NAAG in the unstimulated rat hind paw was about 6 microm. These data extend our understanding of the role of this peptide in sensory neurons and reveal the potential for treatment of inflammatory pain via local application of NAAG peptidase inhibitors at doses that may have little or no central nervous system effects.
Furanoid sugar amino acids (1) were synthesized and used as dipeptide isosteres to induce interesting turn structures in small linear peptides. They belong to a new variety of designed hybrid structures that carry both amino and carboxyl groups on rigid furanose sugar rings. Four such molecules, 6-amino-2,5-anhydro-6-deoxy-D-gluconic acid (3, Gaa) and its mannonic (4, Maa), idonic (5, Iaa), and a 3,4-dideoxyidonic (6, ddIaa) congeners were synthesized. The synthesis followed a novel reaction path in which an intramolecular 5-exo S(N)2 opening of the hexose-derived terminal aziridine ring in 2 by the gamma-benzyloxy oxygen with concomitant debenzylation occurred during pyridinium dichromate oxidation of the primary delta-hydroxyl group to carboxyl function, leading to the formation of furanoid sugar amino acid frameworks in a single step. Incorporation of these furanoid sugar amino acids into Leu-enkephalin replacing its Gly-Gly portion gave analogues 8-11. Detailed structural analysis of these molecules by circular dichroism (CD) and various NMR techniques in combination with constrained molecular dynamics (MD) simulations revealed that two of these analogues, 8a and 10a, have folded conformations composed of an unusual nine-membered pseudo beta-turn-like structure with a strong intramolecular H-bond between LeuNH --> sugarC3-OH. This, in turn, brings the two aromatic rings of Tyr and Phe in close proximity, a prerequisite for biological activities of opioid peptides. The analgesic activities of 8a,b determined by mouse hot-plate and tail-clip methods were similar to that of Leu-enkephalin methyl ester. The syn disposition of the beta-hydroxycarboxyl motif on the sugar rings appears to be the driving force to nucleate the observed turn structures in some of these molecules (8 and 10). Repetition of the motif on both sides of a furanose ring resulted in a novel molecular design of sugar diacid, 2,5-anhydro-D-idaric acid (7, Idac). Bidirectional elongation of the diacid moieties of 7 with identical peptide strands led to the formation of a C2-symmetric reverse-turn mimetic 12 which displayed a very ordered structure consisting of identical intramolecular H-bonds at two ends between LeuNH --> sugar-OH, the same as in 8 and 10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.