Lung mitochondria were isolated by differential centrifugation from pentobarbital-anesthetized male rats. One to three millimolar Mg2+-ATP increased the consumption of oxygen of lung mitochondria oxidizing 10 mM succinate > fourfold (P < 0.01) whereas ATP increased the respiration of liver mitochondria by < 35%. ATP also hyperpolarized partially uncoupled lung mitochondria in the presence of the mitochondria-specific antagonist, oligomycin. However, only 20% of the ATPase activity in the lung mitochondria was blocked by oligomycin compared to a blockade of 91% for liver mitochondria. We investigated the effect of reducing the non-mitochondrial ATPase activity in the lung preparation. A purer suspension of lung mitochondria from a Percoll gradient was inhibited 95% by oligomycin. The volume fraction identified as mitochondria by electron microscopy in this suspension (73.6+/- 3.5%) did not differ from that for liver mitochondria (69.1+/- 4.9%). ATP reduced the mean area of the mitochondrial profiles in this Percoll fraction by 15% (P <0.01) and increased its state 3 respiration with succinate as substrate by 1.5-fold (P < 0.01) with no change in the state 4 respiration measured after carboxyatractyloside. Hence, ATP increased the respiratory control ratio (state 3/state 4, P <0.01). In contrast, state 3 respiration with the complex 1-selective substrates, glutamate and malate, did not change with addition of ATP. The acceleration of respiration by ATP was accompanied by decreased production of H2O2. Thus ATP-dependent processes that increase respiration appear to improve lung mitochondrial function while minimizing the release of reactive oxygen species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.