CSIRO Adverse Drug Event Corpus (Cadec) is a new rich annotated corpus of medical forum posts on patient-reported Adverse Drug Events (ADEs). The corpus is sourced from posts on social media, and contains text that is largely written in colloquial language and often deviates from formal English grammar and punctuation rules. Annotations contain mentions of concepts such as drugs, adverse effects, symptoms, and diseases linked to their corresponding concepts in controlled vocabularies, i.e., SNOMED Clinical Terms and MedDRA. The quality of the annotations is ensured by annotation guidelines, multi-stage annotations, measuring inter-annotator agreement, and final review of the annotations by a clinical terminologist. This corpus is useful for studies in the area of information extraction, or more generally text mining, from social media to detect possible adverse drug reactions from direct patient reports. The corpus is publicly available at https://data.csiro.au.(1).
We review data mining and related computer science techniques that have been studied in the area of drug safety to identify signals of adverse drug reactions from different data sources, such as spontaneous reporting databases, electronic health records, and medical literature. Development of such techniques has become more crucial for public heath, especially with the growth of data repositories that include either reports of adverse drug reactions, which require fast processing for discovering signals of adverse reactions, or data sources that may contain such signals but require data or text mining techniques to discover them. In order to highlight the importance of contributions made by computer scientists in this area so far, we categorize and review the existing approaches, and most importantly, we identify areas where more research should be undertaken.
Unlike widely used Named Entity Recognition (NER) data sets in generic domains, biomedical NER data sets often contain mentions consisting of discontinuous spans. Conventional sequence tagging techniques encode Markov assumptions that are efficient but preclude recovery of these mentions. We propose a simple, effective transition-based model with generic neural encoding for discontinuous NER. Through extensive experiments on three biomedical data sets, we show that our model can effectively recognize discontinuous mentions without sacrificing the accuracy on continuous mentions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.