It is shown that nuclear magnetic resonance (NMR) spectra of nitrogen-14 (spin I = 1) can be obtained by indirect detection in powders spinning at the magic angle (MAS). The method relies on the transfer of coherence from a neighboring nucleus with S = 1/2, such as carbon-13, to single- or double-quantum transitions of nitrogen-14 nuclei. The transfer of coherence occurs through second-order quadrupole-dipole cross terms, also known as residual dipolar splittings. The two-dimensional NMR spectra reveal powder patterns determined by the second-order quadrupolar interactions of nitrogen-14. Analysis of the spectra yields the quadrupolar coupling constant, CQ, and asymmetry parameter, etaQ, of nitrogen-14. These parameters can be related to the structure of nitrogen-containing solids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.