Late on 2011 November 3, STEREO-A, STEREO-B, MESSENGER, and near-Earth spacecraft observed an energetic particle flux enhancement. Based on the analysis of in situ plasma and particle observations, their correlation with remote sensing observations, and an interplanetary transport model, we conclude that the particle increases observed at multiple locations had a common single-source active region and the energetic particles filled a very broad region around the Sun. The active region was located at the solar backside (as seen from Earth) and was the source of a large flare, a fast and wide coronal mass ejection, and an EIT wave, accompanied by type II and type III radio emission. In contrast to previous solar energetic particle events showing broad longitudinal spread, this event showed clear particle anisotropies at three widely separated observation points at 1 AU, suggesting direct particle injection close to the magnetic footpoint of each spacecraft, lasting for several hours. We discuss these observations and the possible scenarios explaining the extremely broad particle spread for this event.
In order to quantify the optimal radiation shielding depth on Mars in preparation for future human habitats on the red planet, it is important to understand the Martian radiation environment and its dependence on the planetary atmospheric and geological properties. With this motivation we calculate the absorbed dose and equivalent dose rates induced by galactic cosmic ray particles at varying heights above and below the Martian surface considering various subsurface compositions (ranging from dry rock to water‐rich regolith). The state‐of‐the‐art Atmospheric Radiation Interaction Simulator based on GEometry And Tracking Monte Carlo method has been employed for simulating particle interaction with the Martian atmosphere as well as subsurface materials. We calculate the absorbed dose in two different phantoms: a thin silicon slab and a water sphere. The former is used to validate our model against the surface measurement by the Radiation Assessment Detector on the Curiosity rover, while the later is used to approximate a human torso, also for evaluation of the biologically weighted equivalent dose. We find that the amount of hydrogen contained in the water‐rich regolith plays an important role in reducing the equivalent dose through modulation of neutron flux (below 10 MeV). This effective shielding by underground water is also present above the surface, providing an indirect shielding for potential human explorations at this region. For long‐term habitats seeking the Martian natural surface material as protection, we also estimate the optimal shielding depth, for different given subsurface compositions, under maximum, average, and minimum heliospheric modulation conditions.
A new GEANT4 particle transport model -the Atmospheric Radiation Interaction Simulator (AtRIS, Banjac et al., 2018) -has been recently developed in order to model the interaction of radiation with planets. The upcoming instrumentational advancements in the exoplanetary science, in particular transit spectroscopy capabilities of missions like JWST and E-ELT, have motivated the development of a particle transport code with a focus on providing the necessary flexibility in planet specification (atmosphere and soil geometry and composition, tidal locking, oceans, clouds, etc.) for the modeling of radiation environment for exoplanets. Since there are no factors limiting the applicability of AtRIS to Mars and Venus, AtRIS' unique flexibility opens possibilities for new studies.Following the successful validation against Earth measurements (Banjac et al., 2018), this work applies AtRIS with a specific implementation of the Martian atmospheric and regolith structure to model the radiation environment at Mars. We benchmark these first modeling results based on different GEANT4 physics lists with the energetic particle spectra recently measured by the Radiation Assessment Detector (RAD) on the surface of Mars. The good agreement between AtRIS and the actual measurement provides one of the first and sound validations of AtRIS and the preferred physics list which could be recommended for predicting the radiation field of other conceivable (exo)planets with an atmospheric environment similar to Mars.
Context. The first opportunity to detect indications for life outside the Solar System may be provided already within the next decade with upcoming missions such as the James Webb Space Telescope (JWST), the European Extremely Large Telescope (E-ELT) and/or the Atmospheric Remote-sensing Infrared Exoplanet Large-survey (ARIEL) mission, searching for atmospheric biosignatures on planets in the habitable zone of cool K-and M-stars. Nevertheless, their harsh stellar radiation and particle environment could lead to photochemical loss of atmospheric biosignatures. Aims. We aim to study the influence of cosmic rays on exoplanetary atmospheric biosignatures and the radiation environment considering feedbacks between energetic particle precipitation, climate, atmospheric ionization, neutral and ion chemistry, and secondary particle generation. Methods. We describe newly-combined state-of-the-art modeling tools to study the impact of the radiation and particle environment, in particular of cosmic rays, on atmospheric particle interaction, the influence on the atmospheric chemistry and the climate-chemistry coupling in a self-consistent model suite. To this end, models like the Atmospheric Radiation Interaction Simulator (AtRIS), the Exoplanetary Terrestrial Ion Chemistry model (ExoTIC), and the updated coupled climate-chemistry model are combined. Results. Besides comparing our results to Earth-bound measurements, we investigate the ozone-production and -loss cycles as well as the atmospheric radiation dose profiles during quiescent solar periods and during the strong solar energetic particle event of February 23, 1956. Further, the scenario-dependent terrestrial transit spectra, as seen by the NIR-Spec infrared spectrometer onboard the JWST, are modeled. Amongst others, we find that the comparatively weak solar event (i) drastically increases the spectral signal of HNO 3 , while (ii) significantly suppressing the spectral feature of ozone. Because of the slow recovery after such events, the latter indicates that ozone might not be a good biomarker for planets orbiting stars with high flaring rates.
We present the Atmospheric Radiation Interaction Simulator (AtRIS), a newly developed GEANT4‐based code tailored specifically to enable parametric studies of radiation propagation through various (exo)planetary atmospheres. Its main purpose is to model the altitude‐dependent atmospheric secondary particle environment and to calculate the ion pair production rates, which are a mandatory input for atmospheric chemistry models in order to, for example, directly characterize the habitability of the modeled planet. Similar codes have been developed previously (e.g., PLANETOCOSMICS; Desorgher, et al., ); however, until now, none possesses the necessary flexibility in the specification of the atmosphere and the regolith that is necessary to model planets outside our solar system. Here we provide a detailed description of AtRIS and its validation against earthbound measurements. For validation, we show comparisons against Earth measurements. Thereby, the focus is on the atmospheric altitude‐dependent ionization, the surface muon, and the neutron fluxes, as well as the primary proton fluxes. Furthermore, a comparison of the computed energy losses of monoenergetic protons based on AtRIS and PLANETOCOSMICS is shown. Our aim is to demonstrate the validity of AtRIS and its importance for future studies on, for example, potential (Earth‐like) exoplanets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.