A novel three-axis teslameter and other similar machines have been designed and developed for SwissFEL at the Paul Scherrer Institute (PSI). The developed instrument will be used for high fidelity characterisation and optimisation of the undulators for the ATHOS soft X-ray beamline. The teslameter incorporates analogue signal conditioning for the three-axes interface to a SENIS Hall probe, an interface to a Heidenhain linear absolute encoder and an on-board high-resolution 24-bit analogue-to-digital conversion. This is in contrast to the old instrumentation setup used, which only comprises the analogue circuitry with digitization being done externally to the instrument. The new instrument fits in a volumetric space of 150 mm × 50 mm × 45 mm, being very compact in size and also compatible with the in-vacuum undulators. This paper describes the design and the development of the different components of the teslameter. Performance results are presented that demonstrate offset fluctuation and drift (0.1–10 Hz) with a standard deviation of 0.78 µT and a broadband noise (10–500 Hz) of 2.05 µT with an acquisition frequency of 2 kHz.
<p>The Hall-effect based Teslameters (also called Gaussmeters) are the mostly applied instruments for measuring DC and AC magnetic flux densities in modern science and industry. This paper gives an overview of commercially available Teslameters at the high-end performance level. The Teslameters have been evaluated by following characteristics that are published by suppliers: probe dimensions, magnetic field sensitive volume, accuracy, magnetic resolution, measurement range, frequency bandwidth, temperature coefficient sensitivity, and price/performance ratio.</p><p>The Teslameter that best matches the measurement needs in various application fields incorporates a 3-axis integrated Hall probe, analog electronics based on the spinning-current technique, an analog-to-digital converter, an embedded computer, and a touch-screen display. The 3-axis Hall probe is a single silicon chip integrating both horizontal and vertical Hall magnetic sensors and a temperature sensor. The spinning-current eliminates most of the Hall probe offset, low-frequency noise, and the planar Hall voltage. The errors due to the Hall sensor non-linearity and the variations in the probe and electronics temperatures are eliminated by a calibration procedure. The errors due to the angular imperfections of the Hall probe are eliminated by a calibration of the sensitivity tensor of the probe. This Teslameter can measure magnetic field vectors from about 100 nT to 30 T, with the spatial resolution of 100 µm, magnetic resolution ±2 ppm of the range, the accuracy 0.002 % of the range, a temperature coefficient less than 5 ppm/°C, and angular errors less than 0.1°.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.