Density functional method with continuum solvation model is used for the calculation of the partition coefficient log K OW and the determination of lipophilicity of 22 most frequently used organophosphate type pesticides. Excellent agreement with experimental data is obtained using three different density functional approximations (one local, one general gradient and one hybrid), and our results highlight DFT as a reliable and trustworthy method for the calculation of lipophilicity for this important class of molecules. Furthermore, the calculated lipophilicity results are associated with the experimentally determined LD 50 and LC 50 values, showing that the most toxic pesticides are those with transient characteristics (medium lipophilicity), although this conclusion must be taken with a caution, due to the many factors influencing the ingestion and action of a certain substance in the body besides lipophilicity.
This study is aimed at analysing biochemical and genetic endpoints of toxic effects after administration of adrenaline. For this purpose, the study was carried out on Wistar rats and three doses of adrenaline were used: 0.75 mg/kg, 1.5 mg/kg, and 3 mg/kg body weight. To achieve these aims, we investigated the effects of adrenaline on catalase (CAT), Cu, Zn-superoxide dismutase (SOD), malondialdehyde (MDA), nitrite (NO2−), carbonyl groups (PCC), and nitrotyrosine (3-NT). Total activity of lactate dehydrogenase (LDH), its relative distribution (LDH1–LDH5) activity, level of acute phase proteins (APPs), and genotoxic effect were also evaluated. The obtained results revealed that all doses of adrenaline induced a significant rise in CAT activity, MDA level, PCC, NO2−, and 3-NT and a significant decrease in SOD activity compared to control. Adrenaline exerted an increase in total activity of LDH, LDH1, and LDH2 isoenzymes. Further study showed that adrenaline significantly decreased serum albumin level and albumin-globulin ratio, while the level of APPs (α1-acid glycoprotein and haptoglobulin) is increased. The micronucleus test revealed a genotoxic effect of adrenaline at higher concentrations (1.5 mg/kg and 3 mg/kg body weight) compared to untreated rats. It can be concluded that adrenaline exerts oxidative and nitrative stress in rats, increased damage to lipids and proteins, and damage of cardiomyocytes and cytogenetic damage. Obtained results may contribute to better understanding of the toxicity of adrenaline with aims to preventing its harmful effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.