A busy lifestyle led people to buy readymade clothes from retail stores with or without fit-on, expecting a perfect match. The existing online cloth shopping systems are capable of providing only 2D images of the clothes, which does not lead to a perfect match for the individual user. To overcome this problem, the apparel industry conducts many studies to reduce the time gap between cloth selection and final purchase by introducing “virtual dressing rooms.” This paper discusses the design and implementation of augmented reality “virtual dressing room” for real-time simulation of 3D clothes. The system is developed using a single Microsoft Kinect V2 sensor as the depth sensor, to obtain user body parameter measurements, including 3D measurements such as the circumferences of chest, waist, hip, thigh, and knee to develop a unique model for each user. The size category of the clothes is chosen based on the measurements of each customer. The Unity3D game engine was incorporated for overlaying 3D clothes virtually on the user in real time. The system is also equipped with gender identification and gesture controllers to select the cloth. The developed application successfully augmented the selected dress model with physics motions according to the physical movements made by the user, which provides a realistic fitting experience. The performance evaluation reveals that a single depth sensor can be applied in the real-time simulation of 3D cloth with less than 10% of the average measurement error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.