Atherosclerosis, a systematic degenerative disease related to the buildup of plaques in human vessels, remains the major cause of morbidity in the field of cardiovascular health problems, which are the number one cause of death globally. Novel atheroprotective HDL-mimicking chemically modified carbon-coated iron nanoparticles (Fe@C NPs) were produced by gas-phase synthesis and modified with organic functional groups of a lipophilic nature. Modified and non-modified Fe@C NPs, immobilized with polycaprolactone on stainless steel, showed high cytocompatibility in human endothelial cell culture. Furthermore, after ex vivo treatment of native atherosclerotic plaques obtained during open carotid endarterectomy surgery, Fe@C NPs penetrated the inner structures and caused structural changes of atherosclerotic plaques, depending on the period of implantation in Wistar rats, serving as a natural bioreactor. The high biocompatibility of the Fe@C NPs shows great potential in the treatment of atherosclerosis disease as an active substance of stent coatings to prevent restenosis and the formation of atherosclerotic plaques.
The number of patients in intensive care units has increased over the past years. Critically ill patients are treated with a real time support of the instruments that offer monitoring of relevant blood parameters. These parameters include blood gases, lactate, and glucose, as well as pH and temperature. Considering the COVID-19 pandemic, continuous management of dynamic deteriorating parameters in patients is more relevant than ever before. This narrative review aims to summarize the currently available literature regarding real-time monitoring of blood parameters in intensive care. Both, invasive and non-invasive methods are described in detail and discussed in terms of general advantages and disadvantages particularly in context of their use in different medical fields but especially in critical care. The objective is to explicate both, well-known and frequently used as well as relatively unknown devices. Furtehrmore, potential future direction in research and development of realtime sensor systems are discussed. Therefore, the discussion section provides a brief description of current developments in biosensing with special emphasis on their technical implementation. In connection with these developments, the authors focus on different electrochemical approaches to invasive and non-invasive measurements in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.