One of the major aims of bioprocess engineering is the real-time monitoring of important process variables. This is the basis of precise process control and is essential for high productivity as well as the exact documentation of the overall production process. Infrared spectroscopy is a powerful analytical technique to analyze a wide variety of organic compounds. Thus, infrared sensors are ideal instruments for bioprocess monitoring. The sensors are non-invasive, have no time delay due to sensor response times, and have no influence on the bioprocess itself. No sampling is necessary, and several components can be analyzed simultaneously. In general, the direct monitoring of substrates, products, metabolites, as well as the biomass itself is possible. In this review article, insights are provided into the different applications of infrared spectroscopy for bioprocess monitoring and the complex data interpretation. Different analytical techniques are presented as well as example applications in different areas.
New reactor concepts as multi-parallel screening systems or disposable bioreactor systems for decentralized and reproducible production increase the need for new and easy applicable sensor technologies to access data for process control. These sophisticated reactor systems require sensors to work with the lowest sampling volumes or, even better, to measure directly in situ, but in situ sensors are directly incorporated into a reactor or fermenter within the sterility barrier and have therefore to stand the sterilization procedures. Consequently, these in situ sensor technologies should enable the measurement of multi-analytes simultaneously online and in real-time at a low price for the robust sensing element. Current research therefore focuses on the implementation of noninvasive spectroscopic and optical technologies, and tries to employ them through fiber optics attached to disposable sensing connectors. Spectroscopic methods reach from ultraviolet to infrared and further comprising fluorescence and Raman spectroscopy. Also, optic techniques like microscopy are adapted for the direct use in bioreactor systems (Ulber et al. in Anal Bioanal Chem 376:342-348, 2003) as well as various electrochemical methods (Joo and Brown in Chem Rev 108:638-651, 2008). This review shows the variety of modern in situ sensing principles in bioprocess monitoring with emphasis on spectroscopic and optical techniques and the progress in the adaption to latest reactor concepts.
Flavonoids are a large group of plant secondary metabolites with a variety of biological properties and are therefore of interest to many scientists, as they can lead to industrially interesting intermediates. The anaerobic gut bacterium Eubacterium ramulus can catabolize flavonoids, but until now, the pathway has not been experimentally confirmed. In the present work, a chalcone isomerase (CHI) and an enoate reductase (ERED) could be identified through whole genome sequencing and gene motif search. These two enzymes were successfully cloned and expressed in Escherichia coli in their active form, even under aerobic conditions. The catabolic pathway of E. ramulus was confirmed by biotransformations of flavanones into dihydrochalcones. The engineered E. coli strain that expresses both enzymes was used for the conversion of several flavanones, underlining the applicability of this biocatalytic cascade reaction.
Bioreactors are closed systems in which microorganisms can be cultivated under defined, controllable conditions that can be optimized with regard to viability, reproducibility, and product-oriented productivity. To drive the biochemical reaction network of the biological system through the desired reaction optimally, the complex interactions of the overall system must be understood and controlled. Optical sensors which encompass all analytical methods based on interactions of light with matter are efficient tools to obtain this information. Optical sensors generally offer the advantages of noninvasive, nondestructive, continuous, and simultaneous multianalyte monitoring. However, at this time, no general optical detection system has been developed. Since modern bioprocesses are extremely complex and differ from process to process (e.g., fungal antibiotic production versus mammalian cell cultivation), appropriate analytical systems must be set up from different basic modules, designed to meet the special demands of each particular process. In this minireview, some new applications in bioprocess monitoring of the following optical sensing principles will be discussed: UV spectroscopy, IR spectroscopy, Raman spectroscopy, fluorescence spectroscopy, pulsed terahertz spectroscopy (PTS), optical biosensors, in situ microscope, surface plasmon resonance (SPR), and reflectometric interference spectroscopy (RIF).
The substrate flexibility of eight purified sesquiterpene cyclases was evaluated using six new heteroatom-modified farnesyl pyrophosphates, and the formation of six new heteroatom-modified macrocyclic and tricyclic sesquiterpenoids is described. GC-O analysis revealed that tricyclic tetrahydrofuran exhibits an ethereal, peppery, and camphor-like olfactoric scent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.