Zusammenfassung
Hintergrund
Gerade in der Frühphase einer Pandemie ist es schwierig, verlässliche Zahlen über deren Ausbreitung zu erhalten. Die derzeitige COVID-19-Pandemie und das damit verbundene umfassende, aber nicht vollständige Datenmonitoring bieten die Möglichkeit, die Dunkelziffer der nicht erfassten Fälle zu schätzen.
Ziel
Vorstellung eines einfachen mathematischen Modells, welches eine frühzeitige Abschätzung der Zahl nichtregistrierter Fälle (Dunkelziffer) ermöglicht.
Material und Methoden
Es werden die Prävalenzen der gemeldeten Infektionen in verschiedenen Altersgruppen mit Kennzahlen der altersabhängigen Kontaktzahlen kombiniert. Daraus wird für jede Altersgruppe eine korrigierte Prävalenz abgeleitet, mit der dann die Dunkelziffer geschätzt werden kann.
Ergebnisse
Unser Modell berechnet für Mitte April 2020 in Deutschland insgesamt 2,8-mal so viele Infektionen wie die Zahl der registrierten Infektionen (Fälle). Für Italien ergibt sich Mitte April 2020 ein Faktor von 8,3. Die daraus abgeleiteten Fallsterblichkeiten betragen 0,98 % für Deutschland und 1,51 % für Italien, welche deutlich näher zusammenliegen als die rein aus den zu dem Zeitpunkt vorhandenen Meldezahlen abgeleiteten Fallsterblichkeiten von 2,7 % und 12,6 %.
Diskussion
Die aus dem Modell abgeleitete Dunkelziffer kann die unterschiedlichen Beobachtungen in den Fallsterblichkeiten und der Zustände in der Frühphase der COVID-19-Pandemie in Deutschland und Italien zu einem großen Teil erklären. Das Modell ist einfach, schnell und robust implementierbar und kann gut darauf reagieren, wenn die Meldezahlen hinsichtlich der Altersstruktur nicht repräsentativ für die Bevölkerung sind. Wir empfehlen, dieses Modell für eine effiziente und frühzeitige Schätzung nichtgemeldeter Fallzahlen bei zukünftigen Epidemien und Pandemien in Betracht zu ziehen.
In the automotive industry, safety parts must be designed according to the state of the art of science and technology such that they do not fail as long as the vehicle is used according to its purpose and misuse of the vehicle does not exceed a reasonably expectable degree. Due to scatter in customer loads and component properties, fatigue validation needs to be based on statistical methods. Mathematically sound methods are devised in order to make the validation process as efficient as possible. They allow considering all test results, including censored test data (e.g. tests suspended due to premature failure of components which are not under consideration). Furthermore, these methods permit adapting the success run criterion successively to the testing process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.