Differences in the ability of opioid drugs to promote regulated endocytosis of m-opioid receptors are related to their tendency to produce drug tolerance and dependence. Here we show that drugspecific differences in receptor internalization are determined by a conserved, 10-residue sequence in the receptor's carboxylterminal cytoplasmic tail. Diverse opioids induce receptor phosphorylation at serine (S)375, present in the middle of this sequence, but opioids differ markedly in their ability to drive higher-order phosphorylation on flanking residues [threonine (T)370, T376, and T379]. Multi-phosphorylation is required for the endocytosispromoting activity of this sequence and occurs both sequentially and hierarchically, with S375 representing the initiating site. Higherorder phosphorylation involving T370, T376, and T379 specifically requires GRK2/3 isoforms, and the same sequence controls opioid receptor internalization in neurons. These results reveal a biochemical mechanism differentiating the endocytic activity of opioid drugs.
Morphine is one of the most potent analgesic drugs. However, the utility of morphine in the management of chronic pain is limited by its rapid development of tolerance. Morphine exerts all of its pharmacological effects via the -opioid receptor. In many systems, tolerance is associated with phosphorylation and desensitization of G-protein-coupled receptors (GPCRs). In case of the -opioid receptor, phosphorylation occurs in an agonist-selective manner. High-efficacy agonists such as [D-Ala 2 -MePhe 4 -Gly-ol]enkephalin (DAMGO), fentanyl, or etonitazene stimulate the phosphorylation of both C-terminal threonine 370 (T370) and serine 375 (S375). In contrast, morphine promotes the phosphorylation of S375 but fails to stimulate T370 phosphorylation. Here, we have assessed the contribution of S375 phosphorylation to the development of antinociceptive tolerance to high-and low-efficacy agonists in vivo. We show that S375 phosphorylation of the -opioid receptor occurs in intact mouse brain in a dose-dependent manner after administration of morphine, fentanyl, or etonitazene. In knock-in mice expressing the phosphorylation-deficient S375A mutant of the -opioid receptor, morphine and fentanyl exhibited greater dose-dependent antinociceptive responses than in wild-type mice. However, acute and chronic tolerance to morphine was retained in S375A mutant mice. In contrast, antinociceptive tolerance after repeated subcutaneous application of etonitazene or repeated intracerebroventricular application of DAMGO was diminished. Thus, tolerance to agonists with different efficacies develops through distinct pathways. Whereas tolerance induced by DAMGO or etonitazene requires agonist-driven phosphorylation of S375, the development and maintenance of antinociceptive tolerance to morphine occurs independent of S375 phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.