The provision of clean water is a global challenge, and membrane filtration is a key technology to address it. Conventional filtration membranes are constrained by a trade-off between permeance and selectivity. Recently, some nanostructured membranes demonstrated the ability to overcome this limitation by utilizing well-defined carbon nanoconduits that allow a coordinated passage of water molecules. The fabrication of these materials is still very challenging, but their performance inspires research toward nanofabricated membranes. This study reports on molecularly thin membranes with sub-nanometer channels that combine high water selectivity with an exceptionally high permeance. Carbon nanomembranes (CNMs) of ∼1.2 nm thickness are fabricated from terphenylthiol (TPT) monolayers. Scanning probe microscopy and transport measurements reveal that TPT CNMs consist of a dense network of sub-nanometer channels that efficiently block the passage of most gases and liquids. However, water passes through with an extremely high permeance of ∼1.1 × 10 mol·m·s·Pa, as does helium, but with a ∼ 2500 times lower flux. Assuming all channels in a TPT CNM are active in mass transport, we find a single-channel permeation of ∼66 water molecules·s·Pa. This suggests that water molecules translocate fast and cooperatively through the sub-nanometer channels, similar to carbon nanotubes and membrane proteins (aquaporins). CNMs are thus scalable two-dimensional sieves that can be utilized toward energy-efficient water purification.
Judiciously matched experiments, calculations, and theory demonstrate that a higher sensitivity to short-range interactions and, consequently, improved resolution on the atomic scale can be achieved by bimodal noncontact dynamic force microscopy. The combination of sub-Angström tip oscillation at the second flexural resonance of a commercially available silicon cantilever with the commonly used large amplitude oscillation at the fundamental resonance frequency enables this performance improvement while avoiding potentially damaging jump-to-contact instabilities.
Enhanced sensitivity to lateral forces on the nominally flat and inert ͑0001͒ surface of graphite is demonstrated via room-temperature dynamic force microscopy using simultaneous excitation and FM detection of the lowest flexural and torsional cantilever resonance modes. The site-independent long-range tip-sample interaction causes no significant lateral force variations except near atomic steps but unprecedented sensitivity to short-range forces is achieved on flat terraces in the attractive range. Two-dimensional bimodal force vs distance maps confirm the stronger distance dependence of the torsional frequency shift compared to the flexural resonance shift. This agrees with model calculations based on theoretical expressions. The lateral force gradient is extracted from the measured torsional shift, and a lateral force variation in at most Ϯ20 pN is obtained by integrating this gradient parallel to the surface. A further integration reveals a potential-energy variation in the attractive force range of only 3 meV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.