Rationale:Pelvic malunion is a rare complication and is technically challenging to correct owing to the complex three-dimensional (3D) geometry of the pelvic girdle. Hence, precise preoperative planning is required to ensure appropriate correction. Reconstructive surgery is generally a 2- or 3-stage procedure, with transiliac osteotomy serving as an alternative to address limb length discrepancy.Patient concerns:A 38-year-old female patient with a Mears type IV pelvic malunion with previous failed reconstructive surgery was admitted to our department due to progressive immobilization, increasing pain especially at the posterior pelvic arch and a leg length discrepancy. The leg discrepancy was approximately 4 cm and rotation of the right hip joint was associated with pain.Diagnosis:Radiography and computer tomography (CT) revealed a hypertrophic malunion at the site of the previous posterior osteotomy (Mears type IV) involving the anterior and middle column, according to the 3-column concept, as well as malunion of the left anterior arch (Mears type IV).Interventions:The surgery was planned virtually via 3D reconstruction, using the patient's CT, and subsequently performed via transiliac osteotomy and symphysiotomy. Finite element method (FEM) was used to plan the osteotomy and osteosynthesis as to include an estimation of the risk of implant failure.Outcomes:There was not incidence of neurological injury or infection, and the remaining leg length discrepancy was ≤ 2 cm. The patient recovered independent, pain free, mobility. Virtual 3D planning provided a more precise measurement of correction parameters than radiographic-based measurements. FEM analysis identified the highest risk for implant failure at the symphyseal plate osteosynthesis and the parasymphyseal screws. No implant failure was observed.Lessons:Transiliac osteotomy, with additional osteotomy or symphysiotomy, was a suitable surgical procedure for the correction of pelvic malunion and provided adequate correction of leg length discrepancy. Virtual 3D planning enabled precise determination of correction parameters, with FEM analysis providing an appropriate method to predict areas of implant failure.
In the run-up to biomechanical testing, fresh human tissue samples are often frozen in order to inhibit initial decomposition processes and to achieve a temporal independence of tissue acquisition from biomechanical testing. The aim of this study was to compare the mechanical properties of fresh tissue samples of the human iliotibial tract (IT) to fresh-frozen samples taken from the same IT and those modified with different concentrations of Dimethylsulfoxide (DMSO) prior to freezing. All samples were partial plastinated and destructive tensile tests were conducted with a uniaxial tensile test setup. A plastination technique already established in the laboratory was modified to improve the clamping behaviour of the samples. Material failure was caused by a gradual rupture of the load-bearing collagen fibre bundles. Contrary to our expectations, no significant difference was found between the tensile strength of fresh and fresh frozen specimens. The addition of 1 wt% DMSO did not increase the tensile strength compared to fresh-frozen samples; an addition of 10 wt% DMSO even resulted in a decrease. Based on our findings, the use of simple fresh-frozen specimens to determine the tensile strength is viable; however fresh specimens should be used to generate a complete property profile.
Introduction Atraumatic necrosis of the femoral head (AFHN) is a common disease with an incidence of 5000–7000 middle-aged adults in Germany. There is no uniform consensus in the literature regarding the configuration of the bone in AFHN. The clinical picture of our patients varies from very hard bone, especially in idiopathic findings, and rather soft bone in cortisone-induced necrosis. A better understanding of the underlying process could be decisive for establishing a morphology-dependent approach. The aim of this study is the closer examination of the condition of the bone in the AFHN compared to the primary hip osteo arthritis (PHOA). Materials and methods The preparations were obtained as part of elective endoprosthetic treatment of the hip joint. Immediately after sample collection, thin-slice CT of the preserved femoral heads was performed to determine the exact density of the bone in the necrosis zone. Reconstruction was done in 0.8–1 mm layers in two directions, coronary and axial, starting from the femoral neck axis. Density of the femoral heads was determined by grey value analysis. The value in Hounsfield units per sample head was averaged from three individual measurements to minimize fluctuations. For biomechanical and histomorphological evaluation, the samples were extracted in the load bearing zone perpendicular to the surface of the femoral head. Group-dependent statistical evaluation was performed using single factor variance analysis (ANOVA). Results A total of 41 patients with a mean age of 64.44 years were included. The mean bone density of the AFHN samples, at 1.432 g/cm3, was about 7% higher than in the PHOA group with a mean value of 1.350 g/cm3 (p = 0.040). The biomechanical testing in the AFHN group showed a 22% higher—but not significant—mean compressive strength (20.397 MPa) than in the PHOA group (16.733 MPa). On the basis of histological analysis, no differentiation between AFHN and PHOA samples was possible. Conclusions The present study (NCT, evidence level II) shows that AFHN has a very well detectable higher bone density compared to PHOA. However, neither biomechanical stress tests nor histomorphological evaluation did show any significant difference between the groups. The results allow the conclusion that there is no “soft” necrosis at all in the AFHN group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.