The processing of Arabidopsis thaliana microRNAs (miRNAs) from longer primary transcripts (pri-miRNAs) requires the activity of several proteins, including DICER-LIKE1 (DCL1), the double-stranded RNA-binding protein HYPONASTIC LEAVES1 (HYL1), and the zinc finger protein SERRATE (SE). It has been noted before that the morphological appearance of weak se mutants is reminiscent of plants with mutations in ABH1/CBP80 and CBP20, which encode the two subunits of the nuclear cap-binding complex. We report that, like SE, the cap-binding complex is necessary for proper processing of pri-miRNAs. Inactivation of either ABH1/CBP80 or CBP20 results in decreased levels of mature miRNAs accompanied by apparent stabilization of pri-miRNAs. Whole-genome tiling array analyses reveal that se, abh1/cbp80, and cbp20 mutants also share similar splicing defects, leading to the accumulation of many partially spliced transcripts. This is unlikely to be an indirect consequence of improper miRNA processing or other mRNA turnover pathways, because introns retained in se, abh1/cbp80, and cbp20 mutants are not affected by mutations in other genes required for miRNA processing or for nonsense-mediated mRNA decay. Taken together, our results uncover dual roles in splicing and miRNA processing that distinguish SE and the cap-binding complex from specialized miRNA processing factors such as DCL1 and HYL1. P osttranscriptional gene regulation by microRNAs (miRNAs) is essential for the development and function of multicellular eukaryotes (1). In plants, miRNAs are processed from primary transcripts that contain partially complementary foldbacks of variable lengths (pri-miRNAs). Pri-miRNAs are similar to messenger RNAs (mRNAs) in being transcribed by DNA-dependent RNA polymerase II (pol II) and carrying a seven-methyl guanosine (m 7 G) cap at the 5Ј end and a polyadenosine (polyA) tail at the 3Ј end (1). Pri-miRNAs are processed to yield 20-to 22-nt-long mature miRNAs by an RNAseIII-like domain containing protein called DICER-LIKE1 (DCL1) (2-4). DCL1 interacts with the double-stranded (ds)RNA-binding protein HYPONASTIC LEAVES1 (HYL1) and the zinc finger protein SERRATE (SE) to ensure proper processing of pri-miRNAs (5-13). In common with dcl1 mutants, pri-miRNA levels are increased in plants that lack HYL1 or SE activity, whereas the amounts of mature miRNAs are reduced (5-9). All three proteins are found in nuclear processing centers, called D-bodies or SmD3/SmB nuclear bodies (12, 13).Mutants deficient in miRNA biogenesis suffer from a large range of morphological defects. Plants with null alleles of DCL1 or SE die as embryos, and even moderate reduction of DCL1 activity leads to a broad spectrum of developmental abnormalities (8,14,15). The weak se-1 allele causes only mild defects, including an alteration of phyllotaxis and the name-sake serrated leaves (16,17). It has been noted before that the se-1 phenotype is reminiscent of that of another mutant with impaired RNA metabolism, ABA hypersensitive 1 (abh1). Both mutants respond more strongly t...
MicroRNAs (miRNAs) are processed from primary transcripts that contain partially self-complementary foldbacks. As in animals, the core microprocessor in plants is a Dicer protein, DICER-LIKE1 (DCL1). Processing accuracy and strand selection is greatly enhanced through the RNA binding protein HYPONASTIC LEAVES 1 (HYL1) and the zinc finger protein SERRATE (SE). We have combined a luciferase-based genetic screen with whole-genome sequencing for rapid identification of new regulators of miRNA biogenesis and action. Among the first six mutants analyzed were three alleles of C-TERMINAL DOMAIN PHOSPHATASE-LIKE 1 (CPL1)/FIERY2 (FRY2). In the miRNA processing complex, SE functions as a scaffold to mediate CPL1 interaction with HYL1, which needs to be dephosphorylated for optimal activity. In the absence of CPL1, HYL1 dephosphorylation and hence accurate processing and strand selection from miRNA duplexes are compromised. Our findings thus define a new regulatory step in plant miRNA biogenesis.
The Arabidopsis thaliana proteins suppressor of phytochrome A-105 1 (SPA1), SPA3, and SPA4 of the four-member SPA1 protein family have been shown to repress photomorphogenesis in light-grown seedlings. Here, we demonstrate that spa quadruple mutant seedlings with defects in SPA1, SPA2, SPA3, and SPA4 undergo strong constitutive photomorphogenesis in the dark. Consistent with this finding, adult spa quadruple mutants are extremely small and dwarfed. These extreme phenotypes are only observed when all SPA genes are mutated, indicating functional redundancy among SPA genes. Differential contributions of individual SPA genes were revealed by analysis of spa double and triple mutant genotypes. SPA1 and SPA2 predominate in dark-grown seedlings, whereas SPA3 and SPA4 prevalently regulate the elongation growth in adult plants. Further analysis of SPA2 function indicated that SPA2 is a potent repressor of photomorphogenesis only in the dark but not in the light. The SPA2 protein is constitutively nuclear localized in planta and can physically interact with the repressor COP1. Epistasis analysis between spa2 and cop1 mutations provides strong genetic support for a biological significance of a COP1-SPA2 interaction in the plant. Taken together, our results have identified a new family of proteins that is essential for suppression of photomorphogenesis in darkness.
MicroRNAs (miRNAs) are short regulatory RNAs processed from partially self-complementary foldbacks within longer MIRNA primary transcripts. Several MIRNA families are conserved deeply through land plants, but many are present only in closely related species or are species specific. The finding of numerous evolutionarily young MIRNA, many with low expression and few if any targets, supports a rapid birth-death model for MIRNA evolution. A systematic analysis of MIRNA genes and families in the close relatives, Arabidopsis thaliana and Arabidopsis lyrata, was conducted using both wholegenome comparisons and high-throughput sequencing of small RNAs. Orthologs of 143 A. thaliana MIRNA genes were identified in A. lyrata, with nine having significant sequence or processing changes that likely alter function. In addition, at least 13% of MIRNA genes in each species are unique, despite their relatively recent speciation (;10 million years ago). Alignment of MIRNA foldbacks to the Arabidopsis genomes revealed evidence for recent origins of 32 families by inverted or direct duplication of mostly protein-coding gene sequences, but less than half of these yield miRNA that are predicted to target transcripts from the originating gene family. miRNA nucleotide divergence between A. lyrata and A. thaliana orthologs was higher for young MIRNA genes, consistent with reduced purifying selection compared with deeply conserved MIRNA genes. Additionally, target sites of younger miRNA were lost more frequently than for deeply conserved families. In summary, our systematic analyses emphasize the dynamic nature of the MIRNA complement of plant genomes.
The four-member SPA protein family of Arabidopsis acts in concert with the E3 ubiquitin ligase COP1 to suppress photomorphogenesis in dark-grown seedlings. Here, we demonstrate that SPA proteins are, moreover, essential for photoperiodic flowering. Mutations in SPA1 cause phyA-independent early flowering under short day (SD) but not long day (LD) conditions, and this phenotype is enhanced by additional loss of SPA3 and SPA4 function. These spa1 spa3 spa4 triple mutants flower at the same time in LD and SD, indicating that the SPA gene family is essential for the inhibition of flowering under non-inductive SD. Among the four SPA genes, SPA1 is necessary and sufficient for normal photoperiodic flowering. Early flowering of SD-grown spa mutant correlates with strongly increased FT transcript levels, whereas COtranscript levels are not altered. Epistasis analysis demonstrates that both early flowering and FT induction in spa1 mutants is fully dependent on CO. Consistent with this finding, SPA proteins interact physically with CO in vitro and in vivo, suggesting that SPA proteins regulate CO protein function. Domain mapping shows that the SPA1-CO interaction requires the CCT-domain of CO, but is independent of the B-box type Zn fingers of CO. We further show that spa1 spa3 spa4 mutants exhibit strongly increased CO protein levels, which are not caused by a change in COgene expression. Taken together, our results suggest, that SPA proteins regulate photoperiodic flowering by controlling the stability of the floral inducer CO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.