Worldwide, ozonation of secondary wastewater effluents is increasingly considered in order to decrease the load of organic contaminants before environmental discharge. However, despite the constantly growing knowledge of ozonation over the past few years, the characterization of transformation products (TPs) is still a major concern, particularly because such TPs might remain biologically active. It has been shown for selected tertiary amine pharmaceuticals that they react with ozone and form the corresponding N-oxides. This study therefore applies liquid chromatography-high resolution mass spectrometry (LC-HRMS) to assess the overall N-oxide formation during the pilot-scale ozonation of a secondary wastewater effluent from a major city in Germany. Sample analysis by LC-HRMS revealed the occurrence of 1,229 compounds, among which 853 were precursors attenuated by ozone and 165 were TPs. Further examination of precursors and TPs using Kendrick mass and Kendrick mass defect analysis revealed 34 pairs of precursors and products corresponding to a mono-oxygenation. Among these, 27 pairs (16% of all TPs) were consistent with N-oxides since the TP had a higher retention time than the precursor, a characteristic of these compounds. Using high resolution tandem mass spectrometry, 10 of these N-oxides could be identified and were shown to be stable during a subsequent filtration step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.