Abstract. We survey several planar graph generators that were selected according to availability, theoretical interest, easiness of implementation and efficiency. We experimentally study graph properties that allow for a basic classification of the generators. This analysis is extended by means of advanced algorithmical behavior on the generated graphs, in particular kernelization of fixed-parameter tractable problems. We will see the major influence of instance selection on algorithmic behavior. This selection has been disregarded in several publications, which deduce general results from non-representative data sets. Altogether, this study helps experimenters to carefully select sets of planar graphs that allow for a meaningful interpretation of their results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.