Traffic congestion in urban road networks is a costly problem that affects all major cities in developed countries. To tackle this problem, it is possible (i) to act on the supply side, increasing the number of roads or lanes in a network, (ii) to reduce the demand, restricting the access to urban areas at specific hours or to specific vehicles, or (iii) to improve the efficiency of the existing network, by means of a widespread use of so-called Intelligent Transportation Systems (ITS). In line with the recent advances in smart transportation management infrastructures, ITS has turned out to be a promising field of application for artificial intelligence techniques. In particular, multiagent systems seem to be the ideal candidates for the design and implementation of ITS. In fact, drivers can be naturally modelled as autonomous agents that interact with the transportation management infrastructure, thereby generating a large-scale, open, agent-based system. To regulate such a system and maintain a smooth and efficient flow of traffic, decentralised mechanisms for the management of the transportation infrastructure are needed.In this article we propose a distributed, market-inspired, mechanism for the management of a future urban road network, where intelligent autonomous vehicles, operated by software agents on behalf of their human owners, interact with the infrastructure in order to travel safely and efficiently through the road network. Building on the reservationbased intersection control model proposed by Dresner and Stone, we consider two different scenarios: one with a single intersection and one with a network of intersections. In the former, we analyse the performance of a novel policy based on combinatorial auctions for the allocation of reservations. In the latter, we analyse the impact that a traffic assignment strategy inspired by competitive markets has on the drivers' route choices. Finally we propose an adaptive management mechanism that integrates the auction-based traffic control policy with the competitive traffic assignment strategy.
Abstract-Wind power is gaining in significance as an important renewable source of clean energy. However, due to their inherent uncertainty, wind generators are often unable to participate in the forward electricity markets like the more predictable and controllable conventional generators. Given this, virtual power plants (VPPs) are being advocated as a solution for increasing the reliability of such intermittent renewable sources. In this paper, we take this idea further by considering VPPs as coalitions of wind generators and electric vehicles, where wind generators seek to use electric vehicles (EVs) as a storage medium to overcome the vagaries of generation. Using electric vehicles in this manner has the advantage that, since the number of EVs is increasing rapidly, no initial investment in dedicated storage is needed. In more detail, we first formally model the VPP and then, through an operational model based on linear programming, we show how the supply to the Grid and storage in the EV batteries can be scheduled to increase the profit of the VPP, while also paying for the storage using a novel scheme. The feasibility of our approach is examined through a realistic case-study, using real wind power generation data, corresponding electricity market prices and electric vehicles' characteristics.
In this paper we study the problem of the assignment of road paths to vehicles. Due to the assumption that a low percentage of vehicles follow the routes proposed by route guidance systems (RGS) and the increase of the use of the same, the conventional RGS might shortly result obsolete. Assuming a complete road network information at the disposal of RGSs, their proposed paths are related with user optimization which in general can be arbitrarily more costly than the system optimum. However, the user optimum is fair for the drivers of the same Origin-Destination (O-D) pair but it doesn't guarantee fairness for different O-D pairs. Contrary, the system optimum can produce unfair assignments both for the vehicles of the same as of different O-D pairs. This is the reason why, in this paper, we propose an optimization model which bridges this gap between the user and system optimum, and propose a new mathematical programming formulation based on Nash Welfare optimization which results in a good egalitarian and utilitarian welfare for all O-D pairs. To avoid the issues with the lack of robustness related with the centralized implementation, the proposed model is highly distributed. We test the solution approach through simulation and compare it with the conventional user-and system-optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.