The observation of chemical reactions on the time scale of the motion of electrons and nuclei has been made possible by lasers with ever shortened pulse lengths. Superfluid helium represents a special solvent that permits the synthesis of novel classes of molecules that have eluded dynamical studies so far. However, photoexcitation inside this quantum solvent triggers a pronounced response of the solvation shell, which is not well understood. Here, we present a mechanistic description of the solvent response to photoexcitation of indium (In) dopant atoms inside helium nanodroplets (HeN), obtained from femtosecond pump–probe spectroscopy and time-dependent density functional theory simulations. For the In–HeN system, part of the excited state electronic energy leads to expansion of the solvation shell within 600 fs, initiating a collective shell oscillation with a period of about 30 ps. These coupled electronic and nuclear dynamics will be superimposed on intrinsic photoinduced processes of molecular systems inside helium droplets.
The quantification of uncertainties of computer simulations due to input parameter uncertainties is paramount to assess a model’s credibility. For computationally expensive simulations, this is often feasible only via surrogate models that are learned from a small set of simulation samples. The surrogate models are commonly chosen and deemed trustworthy based on heuristic measures, and substituted for the simulation in order to approximately propagate the simulation input uncertainties to the simulation output. In the process, the contribution of the uncertainties of the surrogate itself to the simulation output uncertainties is usually neglected. In this work, we specifically address the case of doubtful surrogate trustworthiness, i.e., non-negligible surrogate uncertainties. We find that Bayesian probability theory yields a natural measure of surrogate trustworthiness, and that surrogate uncertainties can easily be included in simulation output uncertainties. For a Gaussian likelihood for the simulation data, with unknown surrogate variance and given a generalized linear surrogate model, the resulting formulas reduce to simple matrix multiplications. The framework contains Polynomial Chaos Expansions as a special case, and is easily extended to Gaussian Process Regression. Additionally, we show a simple way to implicitly include spatio-temporal correlations. Lastly, we demonstrate a numerical example where surrogate uncertainties are in part negligible and in part non-negligible.
Aortic dissection is a cardiovascular disease with a disconcertingly high mortality. When it comes to diagnosis, medical imaging techniques such as Computed Tomography, Magnetic Resonance Tomography or Ultrasound certainly do the job, but also have their shortcomings. Impedance cardiography is a standard method to monitor a patients heart function and circulatory system by injecting electric currents and measuring voltage drops between electrode pairs attached to the human body. If such measurements distinguished healthy from dissected aortas, one could improve clinical procedures. Experiments are quite difficult, and thus we investigate the feasibility with finite element simulations beforehand. In these simulations, we find uncertain input parameters, e.g., the electrical conductivity of blood. Inference on the state of the aorta from impedance measurements defines an inverse problem in which forward uncertainty propagation through the simulation with vanilla Monte Carlo demands a prohibitively large computational effort. To overcome this limitation, we combine two simulations: one simulation with a high fidelity and another simulation with a low fidelity, and low and high computational costs accordingly. We use the inexpensive low-fidelity simulation to learn about the expensive high-fidelity simulation. It all boils down to a regression problem—and reduces total computational cost after all.
The 0.4 K internal temperature of superfluid helium nanodroplets is believed to guarantee a corresponding ground-state population of dopant atoms and molecules inside this cryogenic matrix. We have recorded 6s ← 5p excitation spectra of indium atoms in helium droplets and found two absorption bands separated by about 2000 cm– 1, a value close to the spin–orbit (SO) splitting of the In 2P ground state. The intensities of the bands agree with a thermal population of the 2P1/2 and 2P3/2 states at 870 K, the temperature of the In pick-up cell. Applying femtosecond pump–probe spectroscopy, we found the same dynamical response of the helium solvation shell after the photoexcitation of the two bands. He-density functional theory simulations of the excitation spectra are in agreement with the bimodal structure. Our findings show that the population of SO levels of hot dopants is conserved after pick-up inside the superfluid droplet. Implications for the interpretation of experiments on molecular aggregates are discussed.
In 2000, Kennedy and O’Hagan proposed a model for uncertainty quantification that combines data of several levels of sophistication, fidelity, quality, or accuracy, e.g., a coarse and a fine mesh in finite-element simulations. They assumed each level to be describable by a Gaussian process, and used low-fidelity simulations to improve inference on costly high-fidelity simulations. Departing from there, we move away from the common non-Bayesian practice of optimization and marginalize the parameters instead. Thus, we avoid the awkward logical dilemma of having to choose parameters and of neglecting that choice’s uncertainty. We propagate the parameter uncertainties by averaging the predictions and the prediction uncertainties over all the possible parameters. This is done analytically for all but the nonlinear or inseparable kernel function parameters. What is left is a low-dimensional and feasible numerical integral depending on the choice of kernels, thus allowing for a fully Bayesian treatment. By quantifying the uncertainties of the parameters themselves too, we show that “learning” or optimising those parameters has little meaning when data is little and, thus, justify all our mathematical efforts. The recent hype about machine learning has long spilled over to computational engineering but fails to acknowledge that machine learning is a big data problem and that, in computational engineering, we usually face a little data problem. We devise the fully Bayesian uncertainty quantification method in a notation following the tradition of E.T. Jaynes and find that generalization to an arbitrary number of levels of fidelity and parallelisation becomes rather easy. We scrutinize the method with mock data and demonstrate its advantages in its natural application where high-fidelity data is little but low-fidelity data is not. We then apply the method to quantify the uncertainties in finite element simulations of impedance cardiography of aortic dissection. Aortic dissection is a cardiovascular disease that frequently requires immediate surgical treatment and, thus, a fast diagnosis before. While traditional medical imaging techniques such as computed tomography, magnetic resonance tomography, or echocardiography certainly do the job, Impedance cardiography too is a clinical standard tool and promises to allow earlier diagnoses as well as to detect patients that otherwise go under the radar for too long.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.