Langmuir films of multifunctional, hydrophilic polyethers containing a hydrophobic cholesterol group (Ch) were studied by surface pressure-mean molecular area (π-mmA) measurements and Brewster angle microscopy (BAM). The polyethers were either homopolymers or diblock copolymers of linear poly(glycerol) (lPG), linear poly(glyceryl glycidyl ether) (lPGG), linear poly(ethylene glycol) (lPEG), or hyperbranched poly(glycerol) (hbPG). Surface pressure measurements revealed that the homopolymers lPG and hbPG did not stay at the water surface after spreading and solvent evaporation, in contrast to lPEG. Because of the incorporation of the Ch group in the polymer structure, stable Langmuir films were formed by Ch-lPG(n), Ch-lPGG(n), and Ch-hbPG(n). The Ch-hbPG(n), Ch-lPEG(n), Ch-lPEG(n)-b-lPG(m), Ch-lPEG(n)-b-lPGG(m), and Ch-lPEG(n)-b-hbPG(m) systems showed an extended plateau region assigned to a phase transition involving the Ch groups. Typical hierarchically ordered morphologies of the LB films on hydrophilic substrates were observed for all Ch-initiated polymers. All LB films showed that Ch of the Ch-initiated homopolymers is able to crystallize. This strong tendency of self-aggregation then triggers further dewetting effects of the respective polyether entities. Fingerlike morphologies are observed for Ch-lPEG(69), since the lPEG(69) entity is able to undergo crystallization after transfer onto the silicon substrate.
Interactions of the phospholipid 1,2-dipalmitoylsn-glycero-3-phosphocholine (DPPC) with the amphiphilic diblock copolymer Ch-lPEG 30 -b-hbPG 24 (ChP) are studied at the air-water interface by surface pressure-mean molecular area (π-mmA) measurements of mixed Langmuir films and adsorption measurements of ChP to the air-water interface covered with DPPC monolayers at different initial surface pressure values π 0 . ChP is composed of a single hydrophobic cholesteryl (Ch) moiety covalently bound to a diblock copolymer consisting of a hydrophilic linear poly (ethylene glycol) (lPEG) block and a hydrophilic hyperbranched poly(glycerol) (hbPG) block. Langmuir isotherms and compression moduli of the mixed Langmuir films of different molar ratios reveal distinct interactions between DPPC and ChP during compression. It is demonstrated that the behavior of the DPPC/ChP mixtures is dominated by DPPC up to a molar ratio of 10:1, whereas the behavior is predominantly governed by ChP in mixtures with lower DPPC content (molar ratios of 5:1, 2:1, and 1:1). In adsorption measurements, a strong affinity of ChP to DPPC is observed after injection into the water subphase. The surface pressure value π in up to which ChP is able to penetrate into DPPC monolayers is determined to the remarkably high value of 48.2 mN/m which attests the favorable interactions between DPPC and the Ch moiety of ChP. Atomic force microscopy on LB films of DPPC/ChP mixtures of different molar ratios transferred onto hydrophilic substrates confirms the presence of two different phases, a DPPC-rich phase and a ChP-rich phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.