The island of Holsnøy in the Bergen Arcs, which belong to the Caledonides of western Norway, represents an excellent example of how fluid-induced eclogitization modifies material deeply buried by subduction and continental collision. We produced a new detailed map of the northwestern part of Holsnøy, differentiating not only the magnitude of eclogitization but also the strain intensity at different spatial scales: from the outcrop to the entire massif. Using structural data from eclogite-facies shear zones and eclogitized low-strain domains, we show that fluid-mediated eclogitization not only progresses via the development of shear zones (dynamic eclogitization) but occurs over large areas of the island without associated deformation, creating a characteristic static eclogite-facies overprint. Static eclogitization preserves the structural features of the granulitic protolith while the rock body is transformed from a granulite-to an eclogite-facies mineral assemblage. The extent of static eclogitization was underestimated strongly in the past, a finding also relevant for the interpretation of seismological images in currently active orogens, where presumably similar processes are currently occurring. In addition, we find that the general structure of the eclogite-facies shear zones is scale-independent over several orders of magnitude. Although crustal-scale eclogite-facies complexes are rarely preserved without significant modification during exhumation, this implies that similar geometrical configurations are likely produced at the scale of the whole lower crust during subduction or continental collision and therefore shape the crustal geophysical signature.
Seismic imaging of subduction and continental collision zones suggests that slabs often comprise strong and dry lower crustal rocks, which progressively transform into denser eclogites (
Subduction zone processes and the resulting geometries at depth are widely studied by large‐scale geophysical imaging techniques. The subsequent interpretations are dependent on information from surface exposures of fossil subduction and collision zones, which help to discern probable lithologies and their structural relationships at depth. For this purpose, we collected samples from Holsnøy in the Bergen Arcs of western Norway, which constitutes a well‐preserved slice of continental crust, deeply buried and partially eclogitized during Caledonian collision. We derived seismic properties of both the lower crustal granulite‐facies protolith and the eclogite‐facies shear zones by performing laboratory measurements on cube‐shaped samples. P and S wave velocities were measured in three perpendicular directions, along the principal fabric directions of the rock. Resulting velocities agree with seismic velocities calculated using thermodynamic modeling and confirm that eclogitization causes a significant increase of the seismic velocity. Further, eclogitization results in decreased VP/VS ratios and, when associated with deformation, an increase of the seismic anisotropy due to the crystallographic preferred orientation of omphacite that were obtained from neutron diffraction measurements. The structural framework of this exposed complex combined with the characteristic variations of seismic properties from the lower crustal protolith to the high‐pressure assemblage provides the possibility to detect comparable structures at depth in currently active settings using seismological methods such as the receiver function method.
Fluid flow in crystalline rocks in the absence of fractures or ductile shear zones dominantly occurs by grain boundary diffusion, as it is faster than volume diffusion. It is, however, unclear how reactive fluid flow is guided through such pathways. We present a microstructural, mineral chemical, and thermodynamic analysis of a static fluid-driven reaction from dry granulite to ‘wet’ eclogite. Fluid infiltration resulted in re-equilibration at eclogite-facies conditions, indicating that the granulitic protolith was out of equilibrium, but unable to adjust to changing P–T conditions. The transformation occurred in three steps: (1) initial hydration along plagioclase grain boundaries, (2) complete breakdown of plagioclase and hydration along phase boundaries between plagioclase and garnet/clinopyroxene, and (3) re-equilibration of the rock to an eclogite-facies mineral assemblage. Thermodynamic modelling of local compositions reveals that this reaction sequence is proportional to the local decrease of the Gibbs free energy calculated for ‘dry’ and ‘wet’ cases. These energy differences result in increased net reaction rates and the reactions that result in the largest decrease of the Gibbs free energy occur first. In addition, these reactions result in a local volume decrease leading to porosity formation; i.e., pathways for new fluid to enter the reaction site thus controlling net fluid flow. Element transport to and from the reaction sites only occurs if it is energetically beneficial, and enough transport agent is available. Reactive fluid flow during static re-equilibration of nominally impermeable rocks is thus guided by differences in the energy budget of the local equilibrium domains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.