Perceptual decision-makers often display a constant rate of errors independent of evidence strength. These ‘lapses’ are treated as a nuisance arising from noise tangential to the decision, e.g. inattention or motor errors. Here, we use a multisensory decision task in rats to demonstrate that these explanations cannot account for lapses’ stimulus dependence. We propose a novel explanation: lapses reflect a strategic trade-off between exploiting known rewarding actions and exploring uncertain ones. We tested this model’s predictions by selectively manipulating one action’s reward magnitude or probability. As uniquely predicted by this model, changes were restricted to lapses associated with that action. Finally, we show that lapses are a powerful tool for assigning decision-related computations to neural structures based on disruption experiments (here, posterior striatum and secondary motor cortex). These results suggest that lapses reflect an integral component of decision-making and are informative about action values in normal and disrupted brain states.
The ability to manipulate neural activity with precision is an asset in uncovering neural circuits for decision-making. Diverse tools for manipulating neurons are available for mice, but their feasibility remains unclear, especially when decisions require accumulating visual evidence. For example, whether mice' decisions reflect leaky accumulation is unknown, as are the relevant/irrelevant factors that influence decisions. Further, causal circuits for visual evidence accumulation are poorly understood. To address this, we measured decisions in mice judging the fluctuating rate of a flash sequence. An initial analysis (Ͼ500,000 trials, 29 male and female mice) demonstrated that information throughout the 1000 ms trial influenced choice, with early information most influential. This suggests that information persists in neural circuits for ϳ1000 ms with minimal accumulation leak. Next, in a subset of animals, we probed strategy more extensively and found that although animals were influenced by stimulus rate, they were unable to entirely suppress the influence of stimulus brightness. Finally, we identified anteromedial (AM) visual area via retinotopic mapping and optogenetically inhibited it using JAWS. Light activation biased choices in both injected and uninjected animals, demonstrating that light alone influences behavior. By varying stimulus-response contingency while holding stimulated hemisphere constant, we surmounted this obstacle to demonstrate that AM suppression biases decisions. By leveraging a large dataset to quantitatively characterize decision-making behavior, we establish mice as suitable for neural circuit manipulation studies. Further, by demonstrating that mice accumulate visual evidence, we demonstrate that this strategy for reducing uncertainty in decision-making is used by animals with diverse visual systems.
The ability to manipulate neural activity with precision is an asset in uncovering neural circuits for decision-making. Diverse tools for manipulating neurons are available for mice, but the feasibility of mice for decision-making studies remains unclear, especially when decisions require accumulating visual evidence. For example, whether mice’ decisions reflect leaky accumulation is not established, and the relevant and irrelevant factors that influence decisions are unknown. Further, causal circuits for visual evidence accumulation have not been established. To address these issues, we measured >500,000 decisions in 27 mice trained to judge the fluctuating rate of a sequence of flashes. Information throughout the 1000ms trial influenced choice, but early information was most influential. This suggests that information persists in neural circuits for ~1000ms with minimal accumulation leak. Further, while animals primarily based decisions on current stimulus rate, they were unable to entirely suppress additional factors: total stimulus brightness and the previous trial’s outcome. Next, we optogenetically inhibited anteromedial (AM) visual area using JAWS. Importantly, light activation biased choices in both injected and uninjected animals, demonstrating that light alone influences behavior. By varying stimulus-response contingency while holding stimulated hemisphere constant, we surmounted this obstacle to demonstrate that AM suppression biases decisions. By leveraging a large dataset to quantitatively characterize decision-making behavior, we establish mice as suitable for neural circuit manipulation studies, including the one here. Further, by demonstrating that mice accumulate visual evidence, we demonstrate that this strategy for reducing uncertainty in decision-making is employed by animals with diverse visual systems.Significance statementTo connect behaviors to their underlying neural mechanism, a deep understanding of the behavioral strategy is needed. This understanding is incomplete in mouse studies, in part because existing datasets have been too small to quantitatively characterize decision-making behavior. To surmount this, we measured the outcome of over 500,000 decisions made by 27 mice trained to judge visual stimuli. Our analyses offer new insights into mice’ decision-making strategies and compares them with those of other species. We then disrupted neural activity in a candidate neural structure and examined the effect on decisions. Our findings establish mice as a suitable organism for visual accumulation of evidence decisions. Further, the results highlight similarities in decision-making strategies across very different species.
5Perceptual decision-makers often display a constant rate of errors independent of evidence strength. 6These "lapses" are treated as a nuisance arising from noise tangential to the decision, e.g. inattention 7 or motor errors. Here, we use a multisensory decision task in rats to demonstrate that these 8 explanations cannot account for lapses' stimulus dependence. We propose a novel explanation: 9 lapses reflect a strategic trade-off between exploiting known rewarding actions and exploring 10 uncertain ones. We tested the model's predictions by selectively manipulating one action's reward 11 magnitude or probability. As uniquely predicted by this model, changes were restricted to lapses 12 associated with that action. Finally, we show that lapses are a powerful tool for assigning decision-13 related computations to neural structures based on disruption experiments (here, posterior striatum 14 and secondary motor cortex). These results suggest that lapses reflect an integral component of 15 decision-making and are informative about action values in normal and disrupted brain states.16
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.