ABSTRACT:(R)-N-(3-(6-(4-(1,4-Dimethyl-3-oxopiperazin-2-yl)phenylamino)-4-methyl-5-oxo-4,5-dihydropyrazin-2-yl)-2-methylphenyl)-4,5,6,7-tetrahydrobenzo[b]thiophene-2-carboxamide (GDC-0834) is a potent and selective inhibitor of Bruton's tyrosine kinase (BTK), investigated as a potential treatment for rheumatoid arthritis. In vitro metabolite identification studies in hepatocytes revealed predominant formation of an inactive metabolite (M1) via amide hydrolysis in human. The formation of M1 appeared to be NADPHindependent in human liver microsomes. M1 was found in only minor to moderate quantities in plasma from preclinical species dosed with GDC-0834. Human clearance predictions using various methodologies resulted in estimates ranging from low to high. In addition, GDC-0834 exhibited low clearance in PXB chimeric mice with humanized liver. Uncertainty in human pharmacokinetic prediction and high interest in a BTK inhibitor for clinical evaluation prompted an investigational new drug strategy, in which GDC-0834 was rapidly advanced to a single-dose human clinical trial. GDC-0834 plasma concentrations in humans were below the limit of quantitation (<1 ng/ml) in most samples from the cohorts dosed orally at 35 and 105 mg. In contrast, substantial plasma concentrations of M1 were observed. In human plasma and urine, only M1 and its sequential metabolites were identified. The formation kinetics of M1 was evaluated in rat, dog, monkey, and human liver microsomes in the absence of NADPH. The maximum rate of M1 formation (V max ) was substantially higher in human compared with that in other species. In contrast, the Michaelis-Menten constant (K m ) was comparable among species. Intrinsic clearance (V max /K m ) of GDC-0834 from M1 formation in human was 23-to 169-fold higher than observed in rat, dog, and monkey.
Summary:Purpose: Valproic acid (VPA) is an antiepileptic drug (AED) used for generalized and absence seizures. It has a rare but potentially fatal hepatotoxicity side effect, and many researchers believe that reactive metabolites of VPA could be involved. We demonstrated here that the thiol conjugates of (E)-2,4-diene VPA were significantly elevated in a high-risk group of patients.Methods: Thirty-four patients with seizures were divided into three groups. Group A (n ס 14) were being treated with VPA; group B (n ס 12) received VPA as well as other AEDs that do not induce P450-VPA metabolism; and group C (n ס 8) received VPA and AEDs that induce P450-VPA metabolism. The NAC conjugates of (E)-2,4-diene VPA (NAC I and NAC II) were identified in the urine of patients by gas chromatography/mass spectrography NICI analysis.Results: VPA monotherapy (group A) or VPA polytherapy with non-P450-enzyme-inducing drugs (group B), showed that patients younger than 7.5 years excreted significantly higher concentrations of the two conjugates compared with older patients (older than 7.5 years) in the same groups (p < 0.05). Patients receiving VPA polytherapy with P450-enzymeinducing drugs were all older than 7. 5 years (group C). They excreted significantly higher concentrations of NAC I and NAC II compared with patients in groups A and B who were older than 7.5 years (p < 0.05).Conclusions: There were no significant differences in the excretion of NAC I and NAC II between patients in group C and those who were 7.5 years or younger in groups A and B. High doses of VPA also were a significant factor associated with elevated NAC I and NAC II among young patients and in polytherapy patients.
We report a GC/NICI-MS assay and a LC/ESI-MS/MS assay for the analysis of N-acetylcysteine (NAC) conjugates of (E)-2,4-diene VPA (NAC I and NAC II) identified in humans. The assay also includes the analysis of the NAC conjugate of 4,5-epoxy VPA (NAC III), an identified metabolite in rats treated with 4-ene VPA for its use in metabolic studies in animals. The highly sensitive GC/MS assay was designed to monitor selectively the diagnostic and most abundant [M - 181](-) fragment anion of the di-PFB derivatives of NAC I, NAC II, and NAC IV, the internal standard (IS) and the PFB derivative of NAC III. The higher selectivity of LC/MS/MS methodology was the basis for an assay which could identify and quantitate the underivatized conjugates simultaneously using MRM of the diagnostic ions m/z 130 and 123 arising from the CID of their protonated molecular ions [MH](+). The GC/MS assay employed liquid-liquid extraction whereas the LC/MS/MS assay used a solid-phase extraction procedure. Linearity ranges of the calibration curves were 0.10-5.0microg ml(-1) by GC/MS and 0.10-1.0microg ml(-1) by LC/MS/MS for NAC I, NAC II and NAC III (r(2) = 0.999 or better). Both assays were validated for NAC I and NAC II and provided good inter- and intra-assay precision and accuracy for NAC I and NAC II. The LOQ by LC/MS/MS was 0.1microg ml(-1), representing 1 ng of NAC I and NAC II. The same LOQ (0.1microg ml(-1)) was observed by GC/MS and was equivalent to 100 pg of each metabolite. NAC III was detected at concentrations as low as 0.01 microg ml(-1) by both methods. The total urinary excretion of the NAC conjugates in four patients on VPA therapy was determined to be 0.004-0.088% of a VPA dose by GC/MS and 0.004-0. 109% of a VPA dose by LC/MS/MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.