Purpose This study aims to investigate the correlation between build orientation characteristics, part porosity and mechanical properties of the fused filament fabrication (FFF) process to provide insight into pore formation mechanisms and to establish guidelines for optimal process configurations. Design/methodology/approach Micro computed tomography and metallographic sections provide the basis for a correlation between porosity and extrusion path. Using the correlations found in this study, the way to improve printing strategies and filament properties can be deduced directly from an analysis of the print path and the final influence on mechanical performance. Findings With metal-FFF 3D printing technology, near-dense parts (0.5 Vol.%) can be fabricated. The pore architecture is strongly connected to the build direction and print strategy with parallel, elongated pore channels. Mechanical values of FFF samples are similar to metal injection-molded (MIM) parts, except the elongation to fracture. The high difference of yield strength of sintered samples compared to laser powder bed fusion (LPBF) samples can be attributed to the finer grains and a Hall–Petch hardening effect. The conclusions derived from this study are that the presented process is capable of producing comparable part qualities compared to MIM samples, with higher build rates in comparison to LPBF processes. Originality/value 316L stainless steel was successfully manufactured via FFF. This paper also addresses the effects of scanning strategies on the resulting porosity and proposes improvements to reduce residual porosity, thus increasing the mechanical performance in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.