and Energy Studies prediction of pig velocity, pig-generated slug volume, slug duration, backpressure increase in the pipeline, and process-plant upset. Control of these parameters is very difficult during bypass-pigging operations because of its transient nature. The fluid behavior through bypass holes, subsequent downstream flow regime, and the nature of turbulence are unknown. Transient modeling and simulation results of bypass pigging with help of the OLGA Dynamic Multiphase Flow Simulator (available from Schlumberger) do not match with actual field results. Wax blockage of bypass holes also leads to erroneous results. In this paper, efforts are made to develop empirical correlations to approximate various parameters on the basis of experimental results in comparison with simulation-model prediction. Later, an innovative bypass geometry/profile is proposed and designed, and experimental results are evaluated. Fluid-Flow Modeling and Dynamic Pig Modeling Understanding the motion of pigs and pig trains in pipelines is important, in general, to avoid surprises. Missed inspection data, damage to pigs, or, in the extreme case, fatality caused by high speeds lead to the need to understand pig acceleration, peak velocity, and how the pig or train might be brought under control. Pig-Motion Analysis. The pig-motion analysis shows the following results (Tiratsoo 1999
The oil and gas industry is in continuous look out of innovative means to improve the efficiency of its energy-intensive oil- and gas-processing operations through improved energy use and waste-heat recovery. This paper details about an integrated pilot application of two waste-heat-recovery units designed and implemented in an Offshore platform off Caspian Sea. Actual results are compared with simulation / design results. A thermodynamic analysis of a gas generator engine waste-heat-recovery cycle is carried out. The offshore platform has a water injection plant supporting water flooding project for reservoir pressure maintenance. The Sea Water Lift and Main Injection Pumps are powered by multiple Gas Engine Generators of @ 1000 kW power rating. The exhaust gas from each of these gas engine contains approximately 10 million Btu/hr recoverable heat. Also the heat energy from the jacket cooling water used for engine cooling is used for heating the waxy crude oil and natural gas. A Shell & Tube Heat exchanger is used for recovering the heat energy. By utilizing the heat energy of flue gas and jacket cooling water the energy efficiency of gas engine can be doubled from 35% to 75 %. Two such Gas Generators with Heat Recovery system has been introduced which collectively creates an energy saving of approximately 1500 KW daily for crude oil heating. Approximately 8000 bbl oil with 100 scf/bbl gas oil ratio was able to heat to get a temperature differential of 25-35 degree C. The cooling water temperature was dropped to 60 degree C. With rising fuel costs, energy conservation has taken on added significance. Installation of waste heat recovery units (WHRU's) on gas turbines is one method used in the past to reduce gas plant fuel consumption. More recently, waste heat recovery on multiple reciprocating compressor engines also has been identified as having energy conservation potential. This paper reviews the development and implementation of a WHRU potential. This enhance hydrocarbon recovery, and reduce utility cost in a plant. In an era when energy conservation and fuel shortages are not uncommon, mechanical systems designed to improve the thermal efficiency of fuel-consuming equipment have become a necessity. This paper presents an energy efficient process and mechanical design along with footprint saving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.