Tremendous progress in stem cell biology has resulted in a major current focus on effective modalities to promote directed cellular behavior for clinical therapy. The fundamental principles of tissue engineering are aimed at providing soluble and insoluble biological cues to promote these directed biological responses. Better understanding of extracellular matrix functions is ensuring optimal adhesive substrates to promote cell mobility and a suitable physical niche to direct stem cell responses. Further, appreciation of the roles of matrix constituents as morphogen cues, termed matrikines or matricryptins, are also now being directly exploited in biomaterial design. These insoluble topological cues can be presented at both micro- and nanoscales with specific fabrication techniques. Progress in development and molecular biology has described key roles for a range of biological molecules, such as proteins, lipids, and nucleic acids, to serve as morphogens promoting directed behavior in stem cells. Controlled-release systems involving encapsulation of bioactive agents within polymeric carriers are enabling utilization of soluble cues. Using our efforts at dental craniofacial tissue engineering, this narrative review focuses on outlining specific biomaterial fabrication techniques, such as electrospinning, gas foaming, and 3D printing used in combination with polymeric nano- or microspheres. These avenues are providing unprecedented therapeutic opportunities for precision bioengineering for regenerative applications.
Lactic acid bacteria (LAB) have the potential to degrade intestinal oxalate and this is increasingly being studied as a promising probiotic solution to manage kidney stone disease. In this study, oxalate degrading LAB were isolated from human faeces and south Indian fermented foods, subsequently assessed for potential probiotic property in vitro and in vivo. Based on preliminary characteristics, 251 out of 673 bacterial isolates were identified as LAB. A total of 17 strains were found to degrade oxalate significantly between 40.38% and 62.90% and were subjected to acid and bile tolerance test. Among them, nine strains exhibited considerable tolerance up to pH 3.0 and at 0.3% bile. These were identified as Lactobacillus fermentum and Lactobacillus salivarius using 16S rDNA sequencing. Three strains, Lactobacillus fermentum TY5, Lactobacillus fermentum AB1, and Lactobacillus salivarius AB11, exhibited good adhesion to HT-29 cells and strong antimicrobial activity. They also conferred resistance to kanamycin, rifampicin, and ampicillin, but were sensitive to chloramphenicol and erythromycin. The faecal recovery rate of these strains was observed as 15.16% (TY5), 6.71% (AB1), and 9.3% (AB11) which indicates the colonization ability. In conclusion, three efficient oxalate degrading LAB were identified and their safety assessments suggest that they may serve as good probiotic candidates for preventing hyperoxaluria.
BackgroundCalcium oxalate (CaOx) is the major constituent of about 75% of all urinary stone and the secondary hyperoxaluria is a primary risk factor. Current treatment options for the patients with hyperoxaluria and CaOx stone diseases are limited. Oxalate degrading bacteria might have beneficial effects on urinary oxalate excretion resulting from decreased intestinal oxalate concentration and absorption. Thus, the aim of the present study is to examine the in vivo oxalate degrading ability of genetically engineered Lactobacillus plantarum (L. plantarum) that constitutively expressing and secreting heterologous oxalate decarboxylase (OxdC) for prevention of CaOx stone formation in rats. The recombinants strain of L. plantarum that constitutively secreting (WCFS1OxdC) and non-secreting (NC8OxdC) OxdC has been developed by using expression vector pSIP401. The in vivo oxalate degradation ability for this recombinants strain was carried out in a male wistar albino rats. The group I control; groups II, III, IV and V rats were fed with 5% potassium oxalate diet and 14th day onwards group II, III, IV and V were received esophageal gavage of L. plantarum WCFS1, WCFS1OxdC and NC8OxdC respectively for 2-week period. The urinary and serum biochemistry and histopathology of the kidney were carried out. The experimental data were analyzed using one-way ANOVA followed by Duncan’s multiple-range test.ResultsRecombinants L. plantarum constitutively express and secretes the functional OxdC and could degrade the oxalate up to 70–77% under in vitro. The recombinant bacterial treated rats in groups IV and V showed significant reduction of urinary oxalate, calcium, uric acid, creatinine and serum uric acid, BUN/creatinine ratio compared to group II and III rats (P < 0.05). Oxalate levels in kidney homogenate of groups IV and V were showed significant reduction than group II and III rats (P < 0.05). Microscopic observations revealed a high score (4+) of CaOx crystal in kidneys of groups II and III, whereas no crystal in group IV and a lower score (1+) in group V.ConclusionThe present results indicate that artificial colonization of recombinant strain, WCFS1OxdC and NC8OxdC, capable of reduce urinary oxalate excretion and CaOx crystal deposition by increased intestinal oxalate degradation.Electronic supplementary materialThe online version of this article (doi:10.1186/s12929-014-0086-y) contains supplementary material, which is available to authorized users.
Oxalate, a non-essential end product of metabolism, causes hyperoxaluria and eventually calcium oxalate (CaOx) stone disease. Kidney cells exposed to oxalate stress results in generation of reactive oxygen species (ROS) and progression of stone formation. Perturbations in endoplasmic reticulum (ER) result in accumulation of misfolded proteins and Ca ions homeostasis imbalance and serve as a common pathway for various diseases, including kidney disorders. ER stress induces up-regulation of pro-survival protein glucose-regulated protein 78 (GRP78) and pro-apoptotic signaling protein C/EBP homologous protein (CHOP). Since the association of oxalate toxicity and ER stress on renal cell damage is uncertain, the present study is an attempt to elucidate the interaction of GRP78 with oxalate by computational analysis and study the role of ER stress in oxalate-mediated apoptosis in vitro and in vivo. Molecular docking results showed that GRP78-oxalate/CaOx interaction takes place. Oxalate stress significantly up-regulated expression of ER stress markers GRP78 and CHOP both in vitro and in vivo. Exposure of oxalate increased ROS generation and altered antioxidant enzyme activities. N-Acetyl cysteine treatment significantly ameliorated oxalate-mediated oxidative stress and moderately attenuated ER stress marker expression. The result indicates oxalate toxicity initiated oxidative stress-induced ER stress and also activating ER stress mediated apoptosis directly. In addition, the up-regulation of transforming growth factor β- revealed oxalate may induce kidney fibrosis through ER stress-mediated mechanisms. The present study provide insights into the pathogenic role of oxidative and ER stress by oxalate exposure in the formation of calcium oxalate stone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.