Bone is a self-engineered structural component of the human body with multifaceted mechanical strength, which provides indomitable support to the effective functioning of the human body. It is indispensable to find a suitable biomaterial for substituting the bone as the bone substitute material requirement is very high due to the rate of bone fracture and infection lead to osteoporosis in human beings increases rapidly. It is not an easy task to design a material with good apatite deposition ability, a faster rate of dissolution, superior resorbability, high mechanical strength, and significant bactericidal activity. Since the synthetic hydroxyapatite was not able to achieve the dahlite phase of hydroxyapatite (natural bone mineral phase), silicates emerged as an alternate biomaterial to meet the need for bone graft substitutes. All silicates do not exhibit the properties required for bone graft substitutes, as their composition and methodology adopted for the synthesis are different. Calcium, magnesium, and silicon play a major role in the formation of bone mineral and their metabolism during bone formation. In this review, the relationship between composition and activity of calcium, magnesium-based silicates have been discussed along with the future scope of these materials for hard tissue engineering applications.
K E Y W O R D Sapatite, calcium, magnesium, mechanical strength, osteoporosis, silicates
In the current work, forsterite samples with different surface area were investigated for its antibacterial activity. Dissolution studies show that the lower degradation of forsterite compared to other silicate bioceramics, which is a desirable property for repairing bone defects. Forsterite scaffold shows superior compressive strength than the cortical bone after immersion in simulated body fluid. Bactericidal tests indicate that the forsterite had inhibition effect on the growth of clinical bacterial isolates. Forsterite may be a suitable candidate material for load bearing applications with enhanced mechanical properties and lower degradation rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.