L-glutaminase and glutamic acid decarboxylase (GAD) catalyzes the hydrolysis of L-glutamine and glutamate, respectively. L-glutaminase widely used in cancer therapy along with a combination of other enzymes and most importantly these enzymes were used in food industries, as a major catalyst of bioconversion. The current investigation was aimed to screen and select L-glutaminase, and GAD producing lactic acid bacteria (LAB). A total of 338 LAB were isolated from fermented meat, fermented fish, fermented soya bean, fermented vegetables and fruits. Among 338 isolates, 22 and 237 LAB has been found to be positive for L-glutaminase and GAD, respectively. We found that 30 days of incubation at 35 ºC and pH 6.0 was the optimum condition for glutaminase activity by G507/1. G254/2 was found to be the best for GAD activity with the optimum condition of pH 6.5, temperature 40 ºC and ten days of incubation. These LAB strains, G507/1 and G254/2, were identified as close relative of Lactobacillus brevis ATCC 14869 and Lactobacillus fermentum NBRC 3956, respectively by 16S rRNA sequencing. Further, improvements in up-stream of the fermentation process with these LAB strains are currently under development.Keywords: L-glutaminase; glutamic acid decarboxylase; lactic acid bacteria and 16S rRNA sequencing.Practical Application: LABs based safe starter culture for the fermentation of mushroom to produce high GABA.
Fermented plant beverages (FPB) with a high content of desirable principle components are served as functional foods from several years. Hericium erinaceus is famous for its antimicrobial, antioxidant, antihypertensive and antidiabetic nature. Accordingly, the current study was aimed to produce fermented H. erinaceus juice with a high content of L-glutamine (Gln) and L-glutamic acid (GA) through lactic acid bacteria (LAB) isolated from fermented Thai foods. LAB isolates were screened and identified the potent protease-producing bacteria Enterococcus faecalis (G414/1) that facilitate the production of Gln and GA through protein hydrolysis. Box-Behnken design (BBD) and response surface methodology (RSM) were adapted for the optimisation of conditions for the increased production of Gln and GA during fermentation of H. erinaceus. We succeeded with an optimum concentration of cofactor (CaCl 2 ), pH and temperature for improved protease activity and subsequent Gln and GA production. The ability of isolated E. faecalis strain to produce Gln and GA was demonstrated in this study. Further, upstream processes like strain improvement and media optimisation will direct the way to produce enriched H. erinaceus based FPB.
The current study investigated the antidiabetic property of Lactobacillus fermentum HP3–mediated fermented Hericium erinaceus juice (FHJ) using male Wistar rats with streptozotocin-induced diabetes mellitus (DM). FHJ was prepared using boiled mushroom juice and L. fermentum HP3. Amino acid and γ-aminobutyric acid (GABA) content of FHJ was analyzed. Streptozotocin-induced DM rats were supplemented with FHJ in a pre- and posttreatment method. The changes in plasma insulin, plasma glucose level, glycated hemoglobin (HbA1c), representative cytokines, and the antioxidant system were assessed in experimental rats using spectrophotometric methods and enzyme-linked immunosorbent assay. The supplementation of FHJ improved the body mass, insulin level, and recovery progress of hyperglycemia. HbA1c level was altered by the FHJ intervention. The inflammatory cytokines level was suppressed in FHJ supplemented group compared with control. Intervention of FHJ and insulin improved the production of interleukin-10 and transforming growth factor-–β1 in DM rat. The study suggested that fermented H erinaceus juice may be used as one of the food-based health-promoting supplement to manage DM along with medication.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.